Analisis Pertumbuhan Ikan Nila

21
NALISIS PERTUMBUHAN IKAN NILA Oleh Septi Diah Palupi 1214111058 Jurusan Budidaya Periaran/Perikanan Fakultas Pertanian Universitas Lampung ABSTRAK Pada Praktikum Biologi Perikan yang dilakukan adalah melakukan analisis pertumbuhan ikan, terutama ikan nila. Praktikum ini dilakukan di Laboratorium Perikan Universitas lampung. Tujuan dari praktikum ini adalah untuk mengetahui pertumbuhan panjang, berat dan faktor kondisi ikan nila. Praktikum ini dilakukan pada tanggal 2 Oktober 2013. Hubungan panjang dan berat merupakan aspek biologi perikanan yang perlu di pelajari. Panjang tubuh sangat berhubungan dengan panjang dan berat seperi hukum kubik yaitu bahwa berat se- bagai pangkat tiga dari panjangnya. Namun, hubungan yang terdapat pada ikan sebenarnya tidak demikian karena bentuk dan panjang ikan berbeda-beda. Pengamatan pertumbuhan ikan, baik panjang dan berat merupakan salah satu hal yang penting untuk diamati selama proses budidaya ikan. Hal ini dilakukan agar kenormalan pertumbuhan ikan dapat diketahui sedini mungkin. Key Word : Analisis, berat, ikan, panjang, pertumbuhan. A. PENDAHULUAN 1.1 Latar Belakang Biologi ikan khusus mempelajari tentang kehidupan ikan-ikan yang berupa pertumbuhan ikan, tentang bagaimana ikan-ikan dalam suatu populasi melakukan pemijahan, tumbuh dan menentukan kebiasaan makanan. Dinamika populasi ikan khusus mempelajari perubahan populasi ikan, tentang bagaimana kecepatan populasi ikan tumbuh, mati dan memperbanyak keturunan, selain itu dapat menentukan penyebaran, mengetahui jumlah telur dan tingkat kematangan gonad ikan. Hubungan panjang dan berat merupakan aspek biologi perikanan yang perlu di pelajari. Panjang tubuh sangat berhubungan dengan panjang dan

Transcript of Analisis Pertumbuhan Ikan Nila

Page 1: Analisis Pertumbuhan Ikan Nila

NALISIS PERTUMBUHAN IKAN NILAOleh

Septi Diah Palupi1214111058

Jurusan Budidaya Periaran/PerikananFakultas Pertanian

Universitas Lampung

ABSTRAK

Pada Praktikum Biologi Perikan yang dilakukan adalah melakukan analisis pertumbuhan ikan, terutama ikan nila. Praktikum ini dilakukan di Laboratorium Perikan Universitas lampung. Tujuan dari praktikum ini adalah untuk mengetahui pertumbuhan panjang, berat dan faktor kondisi ikan nila. Praktikum ini dilakukan pada tanggal 2 Oktober 2013. Hubungan panjang dan berat merupakan aspek biologi perikanan yang perlu di pelajari. Panjang tubuh sangat berhubungan dengan panjang dan berat seperi hukum kubik yaitu bahwa berat se-bagai pangkat tiga dari panjangnya. Namun, hubungan yang terdapat pada ikan sebenarnya tidak demikian karena bentuk dan panjang ikan berbeda-beda. Pengamatan pertumbuhan ikan, baik panjang dan berat merupakan salah satu hal yang penting untuk diamati selama proses budidaya ikan. Hal ini dilakukan agar kenormalan pertumbuhan ikan dapat diketahui sedini mungkin.

Key Word : Analisis, berat, ikan, panjang, pertumbuhan.

A. PENDAHULUAN

1.1 Latar Belakang

Biologi ikan khusus mempelajari tentang kehidupan ikan-ikan yang berupa pertumbuhan ikan, tentang bagaimana ikan-ikan dalam suatu populasi melakukan pemijahan, tumbuh dan menentukan kebiasaan makanan. Dinamika populasi ikan khusus mempelajari perubahan populasi ikan, tentang bagaimana kecepatan populasi ikan tumbuh, mati dan memperbanyak keturunan, selain itu dapat menentukan penyebaran, mengetahui jumlah telur dan tingkat kematangan gonad ikan.

Hubungan panjang dan berat merupakan aspek biologi perikanan yang perlu di pelajari. Panjang tubuh sangat berhubungan dengan panjang dan berat seperi hukum kubik yaitu bahwa berat sebagai pangkat tiga dari panjangnya. Namun, hubungan yang terdapat pada

ikan sebenarnya tidak demikian karena bentuk dan panjang ikan berbeda-beda.

Pengamatan pertumbuhan ikan, baik panjang dan berat merupakan salah satu hal yang penting untuk diamati selama proses budidaya ikan. Hal ini dilakukan agar kenormalan pertumbuhan ikan dapat diketahui sedini mungkin. Hubungan panjang dan berat (Length-weight relationship/LWR) merupakan hal yang penting dalam penelitian ilmiah perikanan, karena hal ini memberikan informasi parameter-parameter populasi.

1.2 Tujuan

Adapun tujuan dari praktikum ini dalam mengkaji pertumbuhan dan aspek umur adalah sebagai berikut :

1. Mengetahui perkembangan yang dialami ikan melalui analisis parameter panjang, berat dan morfologi ikan,

Page 2: Analisis Pertumbuhan Ikan Nila

2. Memprediksi pola pertumbuhan ikan, faktor kondisi, kelompok umur dan

3. Menduga pola perkembangan populasi ikan.

B. METODELOGI

B.1 Metode Kerja

B.1.1 Waktu dan TempatPraktikum Biologi perikanan yang

membahas tentang Analisis Pertumbuhan Ikan Nila, dilaksanakan pada tanggal 2 Oktober 2013 pukul 15.00-17.00 WIB di Laboratorium Perikanan Jurusan Budidaya Perairan Fakultas Pertanian Universitas Lampung.

B.1.2 Alat dan BahanAdapun alat dan Bahan yang

digunakan dalam praktikum ini adalah sebagai berikut :Penggaris,Kertas Label,Timbangan berskala minimal 0,01 gram,Kain lap dan tissue, Jarum pentul, Botol film (6 buah perorang),Kantong plastik/kresek,Alat bedah (satu set lengkap perkelompok), Bahan yang di pakai adalah ikan nila (Oreochromis niloticus) dan formalin,m Alat tulis,Benang jahit, dan Spidol permanen.

B.1.3 Prosedur Kerja

Hal pertama yang dilakukan adalah menyiapkan ikan yang akan di amati di atas baki, kemudian keringkan menggunakan tissue. Setelah itu beri nomor pada ikan dengan kertas label, ukur panjang total ikan, panjang cagak, dan panjang baku (panjang ikan dinyatakan dalam satuan mm). Kemudian menimbang berat ikan lalu di catat dalam satuan gram. Perhatikan morfologi ikan yang akan di amati mulai dari bentuk tubuh, posisi mulut dan kelengkapan sirip dengan rumusnya.

Amati setiap sirip ikan, kemudian catat jumlahnya menggunakan rumus, kemudian bedah ikan menggunakan gunting yang ujungnya runcing terlebih dahulu. Setelah terlihat organ-organ

dalam ikan, ambil gonadnya. Tentukan jenis kelamin ikan dan Tingkat Kematangan Gonadnya, gonad disimpan dalam botol film yang sudah di beri label.

Setelah itu uraikan usus ikan yang menggulung dan rentangkan, kemudian ikat kedua ujungnya dan ukur panjang usus ikan, lalu masukkan ke dalam botol film yang sudah di beri label. Setelah semua prosedur dilakukan, beri formalin 4% pada masing-masing botol film sampai tenggelam, tutup rapat kemudian di simpan.

B.2 METODE DATA

1. Pertumbuhan Panjang.

Analysis pertumbuhan panjang model yang digunakan adalah model Von Bartalanffy plot ( VBP ). Bartalanffy mengembangkan model terutama untuk mengetahui laju pertumbuhan panjang. Setelah diketahui kelompok ukuran dengan model Batacharya, maka dilakukan pendekatan untuk menduga tingkat pertumbuhan. Secara khusus data yang dianalisis adalah nilai tengah dari kelompok ukuran yang diperoleh.

Dalam menganalisis pertumbuhan panjang, langkah yang harus dilakukan adalah : pertama menentukan jumlah kelas dengan rumus ∑ kelas = 1 + 3,32 Log n dimana n = jumlah keseluruhan data. Kedua menentukan lebar kelas dengan rumus :

Lk = Nilai max - nilai min

∑ kelas

Ketiga buat tabel frekuensi dari selang kelas dan ke empat buatlah grafik histogram nya

Langkah – langkah analisis pertumbuhan panjang dilakukan dengan model Von Bartalanffy ( VBP ) sebagai berikut :

Page 3: Analisis Pertumbuhan Ikan Nila

a. Membuat selang kelas panjang dari data N ikan yang didapat kemudian menentukan frekuensi setiap selang kelas,

b. Menentukan titik tengah selang, nilai Log F, dan ∆ Log F pada masing – masing selang, dan

c. Menentukan kelompok ukuran ( cohort ) berdasarkan model Batacharya dengan melakukan pendekatan untuk menduga tingkat pertumbuhan. Penurunan ∆ Log F minimal 3 kali secara berurutan disebut 1 cohort.

2. Pertumbuhan Berat.

Analisis pertumbuhan berat hampir sama dengan model pendekatan pertumbuhan panjang. Tetapi sebaliknya dilakukan pada kelompok ikan yang belum memijah secara rutin, karena berat ikan yang relative berubah. Apabila panjang ikan dengan umur tertentu diplotkan dengan panjang ikan dengan umur yang lebih muda satu tahun akan menghasilkan garis lurus dengan sudut yang lebih kecil dari satu.

Sudut Walford besarnya sama dengan e-k , jadi logaritma natural sudut Walford dengan tandanya berubah merupakan penduga dari koefisien pertumbuhan k.

Persamaan Walford Ln+1 = L∞ ( 1 – ek ) + Lte

-k dimana k = - log natural sudut Walford, L∞ = intersep / 1 – b.

Hubungan Panjang dan Berat.

Analisis pertumbuhan dengan menggunakan parameter panjang dan berat menggunakan rumus : ( Bal dan Rao, 1984 )

W = aLbdimana ; W = berat ( garam ) ; L = panjang ( mm ) ; a,b = konstanta

Berdasarkan pola hubungan linier maka dapat dilihat bahwa :

Log W = Log a + b Log L atau Y = a + bX

Korelasi parameter dari hubungan panjang dan berat dapat dilihat dari nilai konstanta b ( sebagai penduga tingkat kedekatan kedua parameter ).

Jika b = 3, disebut hubungan yang isometrik dimana pola pertambahan panjang sama dengan pola pertumbuhan berat.

Jika b < 3, disebut hubungan allometrik negatif, dimana pertambahan panjang lebih dominan.

Jika b > 3, disebut hubungan allometrik positif, dimana pertumbuhan berat lebih dominan.

Untuk mengantisipasi sulit untuk memberikan kesimpulan atau ketetapan pada nilai yang didapat dilapangan ( kelemahan ) tersebut maka perlu diadakan uji statistik. Uji yang digunakan yaitu uji t. Dimana kita dihadapkan pada proses atau usaha untuk melakukan penolakan atau penerimaan terhadap hipotesis yang kita buat ( Stell and Torie, 1989 ). Hipotesis :

HO : b = 3

H1 : b ≠ 3

Thit = b₁ - b₀

Sb₁

dimana Sb1 adalah simpangan koefisien b yang dapat ditentukan dari rumus berikut :

S²b₁= KTS

Page 4: Analisis Pertumbuhan Ikan Nila

∑ X² - ¹/n ( ∑ X )²

Dmna KTS dicari melalui analisa varians

JKT = ∑ Y² - 1/n (∑Y)²

JKR =b1 ( ∑ XY - ¹/n ∑ X ∑ Y )

; JKS = JKT - JKR

Kaidah keputusan adalah dengan membandingkan hasil T hitung dengan T Tabel pada Selang Kepercayaan 95 %. Jika hit > T tabel maka menolak hipotesis nol dan jika T hit < T tabel maka menerima hipotesis nol.

Faktor Kondisi

Faktor kondisi adalah keadaan atau kemontokan ikan yang dinyatakan dalam angka – angka berdasarkan pada data panjang dan berat. Dalam menganalisa kondisi ikan, terlebih dahulu dikelompokkan berdasarkan jenis kelaminnya. Ikan dengan jenis kelamin yang sama dilihat koefisien pertumbuhan ( model gabungan panjang dan berat ). Setelah itu pola pertumbuhan panjang dapat diketahui, maka baru dapat ditemukan kondisi dari ikan tersebut, yaitu :

Jika pertumbuhan ikan isometrik, digunakan rumus :

K = 10 5 W

L3

Jika pola pertumbuhan yang ditemukan adalah allometrik, maka digunakan rumus :

K = W

aLb

Keterangan :

1. K = faktor kondisi

2. W = berat ikan ( gram )

3. L = panjang ikan ( mm )

4. a,b = konstanta hasil regresi dari log W terdahulu dengan nilai a di anti log kan.

Cohort ( kelas ukuran )

Kelompok yang tumbuh berkembang pada waktu yang sama, mendapat pasokan makanan yang sama pula disebut kohort. Salah satu cara untuk menyeragamkan ukuran pada saat panen ikan budidaya adalah dengan melakukan penebaran dengan umur yang sama, sedangkan untuk ikan laut lepas dengan selektifitas alat tangkap. Ikan yang berada di perairan terbuka sulit sekali ditentukan umurnya. Maka alternative yang ditempuh adalah dengan membuat pengelompokkan ikan berdasarkan ukuran. Metode ini dikembangkan oleh Battacharya ( 1967 ) dalam WHO ( 1992 ). Penentuan kelas ukuran ini adalah untuk menentukan ukuran tangkap dari populasi tersebut. Kelompok ukuran ini sangat dipengaruhi oleh pertumbuhan panjang ikan.

Page 5: Analisis Pertumbuhan Ikan Nila

Tahapan kegiatan dalam penentuan kohort adalah sebagai berikut :

1. Tentukan selang kelas ukuran panjang dari ikan yang diamati secara statistik,

2. Tentukan frekuensi masing – masing kelas ukuran tersebut,

3. Lakukan transformasi nilai panjang agar data yang kita pakai lebih baik,

4. Tentukan nilai beda dari hasil transformasi tersebut dengan mengurangi nilai kedua dengan nilai pertama, demikian seterusnya sampai proses pengurangan selesai,

5. Buatlah nilai tengah dari kelas ukuran panjang tersebut ( X ),

6. Tentukan dan hitung nilai yang mengalami penurunan dari transformasi beda frekuensi ( Y ). Minimal ada tiga nilai yang menurun yang baru bisa dikatakan satu kohort.

8. Tentukan rata – rata dari cohort Rataan

dengan bo dan bi adalah koefisien regresi, dan

9. Tentukan standar devisiasinya

SD = √−1b1

, lalu buat plot dari nilai X dan Y, kemudian plot garis dari persamaan regresi.

C. HASIL DAN PEMBAHASAN

C.1 Pertumbuhan Panjang Ikan Nila

Tabel 1. Pertumbuhan Panjang Ikan Nila.

L = - b0

b1

Page 6: Analisis Pertumbuhan Ikan Nila

NoSelang

fi xi Log fi Delta Log fi

Kelas

1 200-206 5 203 0,69897000 ~

2 207-213 13 210 1,11394335 0,4149733

3 214-220 23 217 1,36172783 0,2477844

4 221-227 14 224 1,146128036 -0,2155998

5 228-234 25 231 1,39794000 0,2518119

6 235-241 39 238 1,59106460 0,1931245

7 242-248 4 245 0,60205999 -0,98900462

8 249-255 4 252 0,60205999 0

Page 7: Analisis Pertumbuhan Ikan Nila
Page 8: Analisis Pertumbuhan Ikan Nila

Kelas

200-206

207-213

214-220

221-227

228-234

235-241

242-248

249-25505

1015202530354045

Grafik Pertumbuhan Panjang

fi

Grafik 1. Pertumbuhan Panjang Ikan Nila

Pembahasan : Dari data yang telah didapatkan diketahui bahwa pertumbuhan panjang ikan yang

paling banyak terdapat di antara kelas 235-241 dan pertumbuhan panjang ikan yang paling sedikit ada diantara kelas 242-248 dan 249-255.

Menurut Kimball (1994), menyatakan bahwa dalam pertumbuhan suatu organisme, yang biasanya dapat di-bedakan menjadi beberapa periode.  Periode pertama yaitu periode lamban adalah ciri adanya sedikit pertumbuhan atau tidak ada pertumbuhan yang sebenarnya dan dalam periode ini organisme mempersiapkan diri untuk pertumbuhan

Pertumbuhan Panjang Ikan Nila Jantan

NoSelang Kelas fi Xi Log fi Delta Log fi

1200-208 3 204 0,477121255 ~

2209-217 10 213 1 0,522878745

3218-226 10 222 1 0

4227-235 7 231 0,84509804 -0,15490196

5236-244 3 240 0,477121255 -0,36797679

6245-253 2 249 0,301029996 -0,17609126

Tabel 2.Pertumbuhan Panjang Ikan Nila Jantan

Page 9: Analisis Pertumbuhan Ikan Nila

NoSelang Kelas fi Xi Log fi Delta Log fi

1200-206 2 203 0,301029996 ~

2207-213 7 210 0,84509804 0,5440680

3214-220 12 217 1,079181246 0,2340832

4221-227 11 224 1,041392685 -0,0377885

5228-234 22 231 1,342422681 0,3010299

6235-241 23 238 1,361727836 0,0193051

7242-248 4 247 0,602059991 -0,7596678

8249-256 2 254 0,301029996 -0,30103

200-206

207-213

214-220

221-227

228-234

235-241

242-248

249-2560

5

10

15

20

25

Grafik Pertumbuhan Panjang Ikan Nila Jantan

fi

Grafik 2. Pertumbuhan Panjang Ikan Nila Jantan.

Pembahasan :Dari data yang telah didapatkan diketahui bahwa pertumbuhan panjangikan nila

jantan, yang paling banyak terdapat di antara kelas 235-241 dan pertumbuhan panjang ikan yang paling sedikit ada diantara kelas 200-206 dan 249-256

Pertumbuhan Panjang Ikan Nila Betina.

Tabel 3. Pertumbuhan Panjang Ikan Nila Betina,

NoSelang Kelas fi Xi Log fi Delta Log fi

1200-208 3 204 0,477121255 ~

2209-217 10 213 1 0,522878745

3218-226 10 222 1 0

4227-235 7 231 0,84509804 -0,15490196

5236-244 3 240 0,477121255 -0,36797679

6245-253 2 249 0,301029996 -0,17609126

Page 10: Analisis Pertumbuhan Ikan Nila

200-208

209-217

218-226

227-235

236-244

245-253

0

2

4

6

8

10

12

Grafik Pertumbuhan Panjang Ikan Nila Betina

fi

Grafik 3. Pertumbuhan Panjang Ikan Nila Betina

Pembahasan :Dari data yang telah didapatkan diketahui bahwa pertumbuhan panjang ikan nila

betina yang paling banyak terdapat di antara kelas 209-217 dan serta 218-226 pertumbuhan panjang ikan yang paling sedikit ada diantara kelas 245-253.

C.2 Pertumbuhan Berat Ikan Nila

Tabel 1. Pertumbuhan Berat Ikan Nila,

No

Selang Kelas fi Xi Log fi Delta Log fi

1115-135 1

125 0 ~

2136-156 3

146 0,477121255 0,477121255

3157-177

24

167 1,380211242 0,903089987

No.

Selang

fi Xi Log fi Delta Log fi

Kelas

1200-208 3

204

0,477121255 ~

2209-217

10

213 1

0,522878745

3218-226

10

222 1 0

4227-235 7

231 0,84509804

-0,15490196

5236-244 3

240

0,477121255

-0,36797678

5

6245-253 2

249

0,301029996

-0,17609125

9

Page 11: Analisis Pertumbuhan Ikan Nila

4178-198

39

188 1,591064607 0,210853365

5199-219

23

209 1,361727836 -0,229336771

6220-240

17

230 1,230448921 -0,131278915

7241-261

10

251 1 -0,230448921

8262-282 1

272 0 -1

115-

135

136-

156

157-

177

178-

198

199-

219

220-

240

241-

261

262-

282

0

5

10

15

20

25

30

35

40

45

Grafik 1. Pertumbuhan Berat Ikan Nila

fi

Grafik 1. Pertumbuhan Berat Ikan Nila.

Pembahasan :Dari data yang telah didapatkan diketahui bahwa pertumbuhan berat ikan nila yang

paling banyak terdapat di antara kelas 178-198 dan pertumbuhan panjang ikan yang paling sedikit ada diantara kelas 115-135 dan 262-282.

Menurut Nontji (1999), me-nyatakan bahwa berat dapat kita sebut sebagai suatu fungsi dari panjang, dan hubungan panjang dengan berat hampir mengikuti hukum kubik yang menjelaskan bahwa berat ikan sebagai pangkat tiga dari panjangnya.  Tetapi hubungan yang terdapat pada ikan sebenarnya tidak demikian karena bentuk dan panjang ikan terdapat perbedaan.

Tabel 2. Pertumbuhan Berat Ikan Nila Jantan,

NoSelang Kelas fi Xi Log fi Delta Log fi

1115-135 1 125 0 ~

2136-156 3 146 0,47712125 0,47712125

3157-177 13 167 1,11394335 0,63682209

Page 12: Analisis Pertumbuhan Ikan Nila

4178-198 25 188 1,39794000 0,28399665

5199-219 17 209 1,23044892 -0,16749108

6220-240 15 230 1,17609125 -0,05435766

7241-261 8 251 0,90308998 -0,27300127

8262-282 1 272 0 -0,90308998

115-

135

136-

156

157-

177

178-

198

199-

219

220-

240

241-

261

262-

282

0

5

10

15

20

25

30

Pertumbuhan Berat Ikan Nila Jantan

fi

Grafik 2. Pertumbuhan Berat Ikan Nila Jantan.

Pembahasan :Dari data yang telah didapatkan diketahui bahwa pertumbuhan berat ikan nila jantan

yang paling banyak terdapat di antara kelas 178-198 dan pertumbuhan panjang ikan yang paling sedikit ada diantara kelas 115-135 dan 262-282.

Tabel 3. Pertumbuhan Berat Ikan Nila Betina.

N Selan fi Xi Log fi Delta

Page 13: Analisis Pertumbuhan Ikan Nila

og

Kelas Log fi

1161-176

11

168,5

1,041392685 ~

2177-192 8

184,5

0,903089987 -0,1383

3193-208

11

200,5

1,041392685 0,1383

4209-224 1

216,5 0 -1,041

5225-240 2

232,5

0,301029996 0,3010

6241-256 2

248,5

0,301029996 0

161-176

177-192

193-208

209-224

225-240

241-256

0

2

4

6

8

10

12

Pertumbuhan Berat Ikan Nila Betina

fi

Grafik 3. Pertumbuhan Berat Ikan Nila Betina.

Pembahasan:Dari data yang telah didapatkan diketahui bahwa pertumbuhan berat ikan nila betina

yang paling banyak terdapat di antara kelas 161-176 dan 193-208 lalu pertumbuhan panjang ikan yang paling sedikit ada diantara kelas 209-224.

C.3 Hubungan Panjang dan Berat Ikan Nila.

Page 14: Analisis Pertumbuhan Ikan Nila

2.25 2.3 2.35 2.4 2.451.81.9

22.12.22.32.42.5

f(x) = − 0.2243802339 x + 2.822174576R² = 0.00712983230708519

Log WLinear (Log W)

Grafik Hub. panjang dan Berat Ikan Nila

Grafik 1. Hubungan Panjang dan Berat Ikan Nila.

Pembahasan :Dari grafik yang telah di buat dan berdasarkan pada hubungan liniernya dapat dilihat

bahwa Log W= Log a + b Log L atau Y= a + bx. Dari hasil yang didapat berdasarkan table, nilai b<3, yaitu Y= -0,2244x + 2,8222. Jadi hubungan panjang dan beratnya bersifat allometrik negatif, dimana pertambahan panjang lebih dominan daripada pertambahan berat. Artinya, ikan nila tersebut kurus.

Perbedaan ukuran berat dan panjang antara tiap ikan tersebut dapat dipengaruhi oleh berbagai faktor, seperti yang telah dikemukakan oleh Fujaya (1999), dimana ada dua faktor yang mempengaruhi pertumbuhan ikan yaitu faktor dalam dan faktor luar. Faktor dalam ini sulit untuk dilakukan pengontrolan, sedangkan faktor luar mudah untuk pengontrolannya.

2.25 2.3 2.35 2.4 2.451.81.9

22.12.22.32.42.5

f(x) = 1.16512058891 x − 0.448591419438R² = 0.146415337993234

Log WLinear (Log W)

Grafik Hub. Panjang dan Berat Ikan Nila Jantan

Grafik 2. Hubungan Panjang dan Berat Ikan Nila Jantan.

Pembahasan :

Page 15: Analisis Pertumbuhan Ikan Nila

Dari grafik yang telah di buat dan berdasarkan pada hubungan liniernya dapat dilihat bahwa Log W= Log a + b Log L atau Y= a + bx. Dari hasil yang didapat berdasarkan table, nilai b<3, yaitu Y=1,1651x - 0,4486. Jadi hubungan panjang dan beratnya bersifat allometrik negatif, dimana pertambahan panjang lebih dominan daripada pertambahan berat. Artinya, ikan nila jantan tersebut kurus.

2.25 2.3 2.35 2.4 2.452.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

f(x) = 1.4308983101 x − 1.0801731841R² = 0.488458576402827

Log W

Linear (Log W)

Grafik Hub. Panjang Ikan Nila Betina

Grafik 3. Hubungan Panjang dan Berat Ikan Nila Betina.

Pembahasan :Dari grafik yang telah di buat dan berdasarkan pada hubungan liniernya dapat dilihat

bahwa Log W= Log a + b Log L atau Y= a + bx. Dari hasil yang didapat berdasarkan table, nilai b<3, yaitu Y=1,4309x - 1,0802. Jadi hubungan panjang dan beratnya bersifat allometrik negatif, dimana pertambahan panjang lebih dominan daripada pertambahan berat. Artinya, ikan nila jantan tersebut kurus.

Perbedaan ukuran panjang dan berat tubuh ikan dipengaruhi oleh beberapa faktor yaitu faktor keturunan, faktor umur, faktor jenis kelamin,faktor parasit dan penyakit, kualitas air, misalnya suhu oksigen terlarut dan karbondioksida. (Fujaya 1999).

C.4 Faktor Kondisi

Page 16: Analisis Pertumbuhan Ikan Nila

100 150 200 250 300186188190192194196198200202204

f(x) = − 0.04381160961 x + 205.318909551R² = 0.266889277264991

Faktor Kondisi Ikan Nila

anti log a * L^b

Linear (anti log a * L^b)Berat (gram)

Fakt

or K

ondi

si

Grafik 1. Faktor Kondisi Ikan Nila

Pembahasan :Dari grafik yang telah di buat dan berdasarkan pada hubungan liniernya dapat dilihat

bahwa dari hasil yang didapat berdasarkan table, nilai b<1, yaitu Y=-0,0438x + 205,32. Jadi artinya, ikan nilatersebut kurus.

100 150 200 250 3000

0.20.40.60.8

11.21.41.6

f(x) = 0.0040827917 x + 0.1853305552R² = 0.838986221001586

Faktor Kondisi Ikan Nila Jantan

fk

Berat (gram)

Fakt

or K

ondi

si

Grafik 2. Faktor Kondisi Ikan Nila Jantan

Pembahasan : Dari grafik yang telah di buat dan berdasarkan pada hubungan liniernya dapat dilihat

bahwa dari hasil yang didapat berdasarkan table, nilai b<1, yaitu Y== 0,0041x + 0,1853. Jadi artinya, ikan nila jantan tersebut kurus.

Page 17: Analisis Pertumbuhan Ikan Nila

0 10 20 30 400

0.20.40.60.8

11.21.4

f(x) = 0.0011602704 x + 0.9815769579R² = 0.018237730424946

Faktor Kondisi Ikan Nila Betina

fkLinear (fk)

Berat (gram)

Fakt

or K

ondi

si

Grafik 3. Faktor Kondisi Ikan Nila Betina

Pembahasan : Dari grafik yang telah di buat dan berdasarkan pada hubungan liniernya dapat dilihat bahwa dari hasil yang didapat berdasarkan table, nilai b<1, yaitu Y== 0,0012x + 0,9816. Jadi artinya, ikan nila jantan tersebut kurus.

D. KESIMPULAN DAN SARAN

D.1 Kesimpulan

Dari hasil praktikum yang sudah dilakukan dapat didapatkan beberapa kesimpulan sebagai berikut :1. Ikan nila yang di analisis dalam praktikum ini adalah ikan nila yang kurus,

2. Perbedaan berat dan panjang ikan dipengaruhi oleh faktor internal dan eksternal. Faktor internalnya adalah umur, dan gen, faktor eksternal yamg memengaruhi diantaranya adalah kualitas air

3. Faktor Kondisi ikan nila , dari 2 atau mendekati satu, jadi ikan nila yang di amati adalah ikan nila yang kurus.

D.2 SaranDiharapkan kepada asisten dosen untuk lebih sering mengawasi praktikan ketika

sedang melalukan sebuah praktikum, agar praktikan lebih mudah untuk bertanya jika ada metode praktikum yang belum dimengerti. Terima kasih.