ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

456
TUGAS AKHIR ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA DIAJUKAN SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PROGRAM STRATA SATU (S1) PADA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO UNIVERSITAS DARMA PERSADA Disusun oleh : Nama :LUCHINDA HEPRILIAN NIM :2011210001 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA JAKARTA 2015

Transcript of ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Page 1: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

TUGAS AKHIR

ANALISIS KINERJA JARINGAN SERAT OPTIK

PADA RING 1 DI ARNET JATINEGARA

DIAJUKAN SEBAGAI SALAH SATU SYARAT UNTUK

MENYELESAIKAN PROGRAM STRATA SATU (S1) PADA FAKULTAS

TEKNIK JURUSAN TEKNIK ELEKTRO

UNIVERSITAS DARMA PERSADA

Disusun oleh :

Nama :LUCHINDA HEPRILIAN

NIM :2011210001

JURUSAN TEKNIK ELEKTRO

FAKULTAS TEKNIK

UNIVERSITAS DARMA PERSADA

JAKARTA

2015

Page 2: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

ABSTRAK

Permasalahan redaman dan daya optik juga mempunyai hubungan dengan

perencanaan pemasangan instalasi sistem komunikasi kabel serat optik ketika

sistem tersebut mengalami gangguan disepanjang kabel serat optik.Pada

penelitian ini telah dilakukan analisis kinerja sistem komunikasi serat optik

melalui redaman serat optik pada Ring 1 di PT. Telekomunikasi Indonesia Tbk,

divisi SKSO Arnet Jatinegara. Pada jaringan Arnet Jatinegaramenggunakan kabel

serat optik Singlemode Step Indexdengan tipe G.652 dan G.655 denga nilai

redaman kabel yang berbeda diantaranya 0,21 dB dan 0,22 dB dengan sistem

multiplexer yang digunakan saat ini pada link tersebut adalah SDH Fujitsu.

Untuk melakukan analisis kinerja jaringan, digunakan metode link power

budget untuk mengetahui penurunan daya penerimaan di bagian receiver akibat

redamanpada sistem komunikasi serat optik yang terjadi di sepanjang kabel serat

optik. Dari hasil data pengukuran terdapat faktor yang mengakibatkan penurunan

daya penerimaan di sepanjang kabel optik disebabkan terjadinyaloss splice pada

kabel yang tidak memenuhi standar. Dengan diketahuinya penerimaan pada

receiver dan standar minimal penerimaan maka akan diketahui kinerjanya.

Dari hasil penelitian ini didapatkan bahwa pada link STO Jatinegara- STO

Kebayoran terdapat 13 core yang mengalami penurunan daya kurang dari

perhitungan berdasarkan parameter standar sebesar -5,264 dBm dengan loss

spliceterbanyak terdapat pada pada titik spliceke 4 danloss splice paling tinggi

sebesar 5,264 dB. Kemudian untuk link STO Jatinegara- STO Semanggi terdapat

12 core yang mengalami penurunan daya kurang dari perhitungan berdasarkan

parameter standar sebesar -5,04 dBm dengan loss spliceterbanyak terdapat pada

titik splice ke 2 dan 3 danloss paling tinggi sebesar 3,624 dB. Sedangkan untuk

STO Jatinegara- STO Gambir 1 terdapat 10coreyang mengalami penurunan daya

kurang dari perhitungan berdasarkan parameter standar sebesar -4,8 dBm dengan

loss splice terbanyak pada titik splice ke 2 dan loss splice paling tinggi sebesar

2,883 dB.

Kata Kuci : Kualitas Penerimaan SKSO, Loss, dan Link Budget

Page 3: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

DAFTAR PUSTAKA

1. Achmad Hidayatno, “Pengukuran Serat Optik Beserta Power Kalkulasi

Redamannya Untuk Wilayah Pekalongan”. Tugas Akhir Sumatra Utara

:2012.

http://www.elektro.undip.ac.id/el_kpta/wpcontent/uploads/2012/05/21060

110141055_MKP.pdf diakses pada Juni 2015

2. Donda Manura , “Analisis Perancangan Jaringan Serat Optik DWDM

(Dense Wavelenght Division Multiplexing) Untuk Link Medan-Lnagsa

di PT Telkom Medan. Tugas Akhir Universitas Sumatra Utara :2012.

http://repository.usu.ac.id/bitstream/123456789/37139/3/Chaptr%20II.pdf

3. Endy Kusuma Wadhana, “Analisa Redaman Serat Optik Menggunakan

Metode Optikal Link Power Budget”. Tugas Akhir : ITS Surabaya. 2010

http://digilib.its.ac.id/public/ITS-Undergraduate-12664-Paper.pdf

4. Gouzali Saydam, Bc,Drs, “Sistem Telekomunikasi di Indonesi”. Jilid 2,

Jakarta; Djambatan, 2003

5. Kao, Charles K, “Optical Fiber System: Tecnology, Design, and

Applications”. McGraw Hill Book Co;Singapore, 1999

6. Kaiser Gerard, “Optical Fiber Communication”. 3rd McGraw-Hill

International Book Company; Singapore, 2000

7. Ridwan Alief, “Teknik Penyambungan Serat Optik di PT

Telekomunikasi Indinesia Tbk AREA NETWORK SUMATRA

UTARA”. Kerja Praktek:Jakarta.2011

8. Sarini, Leti. 2008. Analisa Konfigurasi Kontingensi Sistem Komunikas

Serat Optik (SKSO) Intercity Palembang (Studi Kasus Transmisi Talang

KelapaKenten Ujung) di PT. Telkom. Poloteknik Negeri Sriwijaya.

http://lib.ui.ac.id/file?file=digital/131341-T%2027623Analisis%

Page 4: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

20konfigurasi% 20kintigensi%20literatur.pdf

9. Simanjutak Tiur LH. Ir, “Dasar- Dasar Telekomunikasi”, PT. Alumni;

Bandung 2002

10. Zahrotul Maulida, “Pengukuran Kabel Serat Optik Dengan OTDR beserta

Power Kalkulasi Redamannya Untuk Wilayah Pekalongan. Kerja Praktek:

Universitas Dipenogoro.2010

http://www.elektro.undip.ac.id/el_kpta/wpcontent/uploads/2012

/05/21060110141055_MKP.pdf

11. .......... “Modul Pelatihan :Cara Alat Ukur dan Penyambungan PT

Telekomunikasi Indonesia Jatinegara”. 2004

12. ......... “Modul Jaringan Akses dan Jaringan Transport. Jurusan Teknik

Elektro STT Telkom”. 2007

13. ......... “Sistem Komunikasi Serat Optik”

http://www.elektro.undip.ac.id/el_kpta/wpcontent/uploads/2012/05/21060

1101410013_MKP.pdf

Page 5: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

i

LEMBAR PERNYATAAN

Saya yang bertanda tangan di bawah ini:

NAMA :LUCHINDA HEPRILIAN

NIM :2011210001

JURUSAN : ELEKTRO

FAKULTAS :TEKNIK ELEKTRO

UNIVERSITAS :DARMA PERSADA

JUDUL TUGAS AKHIR :ANALISIS KINERJA JARINGAN

SERAT OPTIK PADA RING 1 DI

ARNET JATINEGARA

Menyatakan bahwa karya ilmiah yang saya susun di bawah bimbingan Ir. Agus

Sun Sugiharto,MT bukan merupakan hasil jiplakan skripsi sarjana atau karya

orang lain, sebagian atau seluruhnya dan isi sepenuhnya menjadi tanggung jawab

saya sendiri. Demikian pernyataa ini saya buat dengan sesungguhnya.

Jakarta, September 2014

LUCHINDA HEPRILIAN

NIM :2011210001

Page 6: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

ii

LEMBAR PENGESAHAN

TUGAS AKHIR

ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 ARNET

JATINEGARA

Disusun Oleh:

LUCHINDA HEPRILIAN

2011210001

Telah diterima dan disahkan sebagai salah satu syarat memperoleh gelar sarjana

Teknik Strata Satu (S1) pada Fakultas Teknik Jurusan Elektro

Universitas Darma Persada

Mengetahui,

M. Darsono,ST,MT Ir.Agus Sun Sugiharto,MT

Ketua Jurusan Teknik Elektro Dosen Pembimbing Tugas Akhir

FAKULTAS TEKNIK

JURUSAN TEKNIK ELEKTRO

UNIVERSITAS DARMA PERSADA

JAKARTA

2015

Page 7: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

iii

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Tuhan Yang Maha Kuasa atas

segala rahmat dan karunia-Nya sehingga penulis mampu untuk menyelesaikan

Tugas Akhir ini dengan baik. Tugas Akhir ini merupakan salah satu syarat untuk

memperoleh gelar kesarjanaan pada Departemen Teknik Elektro Fakultas Teknik

Universitas Darma Persada . Adapun Tugas Akhir ini berjudul “ANALISIS

KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET

JATINEGARA”,penulis mempersembahkan kepada yang teristimewa Ayahanda

Marno dan Ibunda Sumiyem yang telah membesarkan, mendidik serta banyak

menberi dukungan, semangat, dan doa kepada penulis. Juga kepada adikadik yang

penulis sayangi yaitu Annisa Ramadhani danSyifa Fariha yang selalu memberikan

doa dan motivasi kepada penulis.

Selama penulisan Tugas Akhir ini hingga menyelesaikannya, penulis

banyak mendapat bantuan dan dukungan serta masukan dari banyak pihak. Pada

kesempatan ini penulis mengucapkan ribuan terima kasih yang sebesar-besarnya

kepada :

1. Bapak Ir. Agus Sun Sugiharto,MT selaku Dekan Fakultas Teknik Universitas

Darma Persada dan sekaligus Dosen Pembimbing yang telah memberikan

masukan dan penjelasan dalam penyusunan Tugas Akhir ini.

2. Bapak M. Darsono, ST. MT selaku Ketua Jurusan Teknik Elektro Fakultas

Teknik Universitas Darma Persada.

4. Seluruh Dosen di Universitas Darma Persada yang telah memberi ilmu

pengetahuan yang berguna bagi penulis selama perkuliahan.

5. Seluruh staf karyawan di Fakultas Teknik Fakultas Teknik Universitas Darma

Persada

6. Bapak Tony Joostiono sebagai Asisten Manager Divisi Transmisi sekaligus

pembimbing lapangan di PT Telekomunikasi Indonesia Tbk divisi Area

Network Regional Jatinegara.

Page 8: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

iv

7. Bapak Moutia Desyanto, selaku General Management di PT. Telekomunikasi

Indonesia Tbk Divisi Area Network Regional Jatinegara.

8. Seluruh staf karyawan PT. Telekomunikasi Indonesia Tbk, Kantor Divisi

Area Network Regional Jatinegara.

9. Sahabat terbaik penulis Umi Fadilatun, Oktaviana Dhewi, Tati Setaningrum,

Putri Juliandani dan Trisna Febria terima kasih untuk dukungan dan

semangatnya selalu.

10. Teman seperjuangan angkatan 2011 Teknik Elektro, khususnya konsentrasi

Teknik Telekomunikasi yang selalu memberikan dukungan dan semangat

kepada penulis.

11. Seluruh Teman seperjuangan angkatan 2011 dari berbagai jurusan dan seluruh

warga Fakultas Teknik Universitas Darma Persada.

Berbagai usaha telah penulis lakukan demi selesainya Tugas Akhir ini

dengan baik, tetapi penulis menyadari akan kekurangan dan keterbatasan penulis.

Oleh karena itu, penulis sangat mengharapkan saran dan kritik dengan tujuan

menyempurnakan dan mengembangkan kajian dalam bidang Tugas Akhir ini.

Akhir kata penulis berharap agar Tugas Akhir ini dapat bermanfaat bagi

pembaca dan penulis.

Jakarta, Sepetember 2015

Penulis,

LUCHINDA HEPRILIAN

NIM : 2011210001

Page 9: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

v

DAFTAR ISI

LEMBAR PERNYATAAN ........................................................................................... i

LEMBAR PENGESAHAN ........................................................................................... ii

KATA PENGANTAR ................................................................................................... iii

DAFTAR ISI .................................................................................................................. v

DAFTAR GAMBAR ..................................................................................................... viii

DAFTAR TABEL .......................................................................................................... x

DAFTAR LAMPIRAN .................................................................................................. xi

DAFTAR SINGAKATAN............................................................................................. xii

BAB I PENDAHULUAN

1.1 Latar Belakang ................................................................................................... 1

1.2 Perumusan Masalah ........................................................................................... 2

1.3 Tujuan Penulisan ................................................................................................ 3

1.4 Pembatasan Masalah .......................................................................................... 3

1.5 Metode Pengumpulan Data ................................................................................ 3

1.6 Sistematika Penulisan......................................................................................... 4

BAB II SISTEM KOMUNIKASI SERAT OPTIK

2.1 Teknologi Serat Optik ......................................................................................... 5

2.2 Pengertian Sistem Komunikasi Serat Optik ........................................................ 7

2.3 Prinsip Kerja Komunikasi Serat Optik ................................................................ 7

2.3.1 Pemancar Optik ...................................................................................... 9

2.3.2 Repeater ................................................................................................. 10

Page 10: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

vi

2.3.3 Detektor ................................................................................................ 11

2.4 Serat Optik ......................................................................................................... 11

2.5 Redaman Serat Optik ......................................................................................... 16

2.5.1 Faktor Instrinsik .................................................................................... 17

2.5.2 Faktor Ekstrinsik ................................................................................... 17

2.5.3 Redaman Penyambungan ...................................................................... 18

2.5.4 Dispersi ................................................................................................. 20

2.6 Penerimaan Optik (Receiver) .............................................................................. 22

2.7 Keuntungan dan Kerugian Serat Optik ............................................................... 22

2.8 DWDM ( DenseWavelength Division Multiplexing ) ......................................... 23

2.9 Sistem Komunikasi Serat Optik Menggunakan SDH ......................................... 27

2.10 Teknik Penyambungan Serat Optik .................................................................... 29

2.11 Link Power Budget .............................................................................................. 30

BAB III KONFIGURASI JARINGAN SERAT OPTIK ARNET

JATINEGARA

3.1 Konfigurasi Jaringan .......................................................................................... 32

3.2 Konfigurasi Jaringan di 3 STO .......................................................................... 34

3.3 Data Jaringan ...................................................................................................... 35

3.4 Perangkat Jaringan Komunikasi Serat Optik ..................................................... 36

3.5 Metode Pengukuran ........................................................................................... 40

3.5.1 Fungsi OTDR ........................................................................................ 40

3.5.2 Prinsip Kerja OTDR .............................................................................. 41

3.5.3 Hal yang Perlu Diperhatikan Dalam Penggunaan OTDR ...................... 42

Page 11: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

vii

3.5.4 Langkah- Langkah Menggunalan OTDR.............................................. 42

3.5.5 Hasil Pengukuran OTDR ...................................................................... 44

3.6 Komponen Jaringan Komunikasi Serat Optik .................................................... 46

3.6.1 Kabel Optik ........................................................................................... 47

3.6.2 Splice ..................................................................................................... 47

3.6.3 Konektor ................................................................................................ 48

BAB IV ANALISIS KINERJA SERAT OPTIK PADA RING 1 DI ARNET

JATINEGARA

4.1 ARNET Jatinegara Ring 1 di 3 STO ................................................................. 49

4.2 Analisis Penentuan Gangguan........................................................................... 50

4.2.1 Analisis Penentuan Gangguan Link STO Jatinegara- STO

Kebayoran .......................................................................................... 51

4.2.2 AnalisisPenentuanGangguan Link STO Jatinegara- STO

Semanggi ........................................................................................... 52

4.2.3 Analisis PenentuanGangguan Link STO Jatinegara- STO

Gambir1............................................................................................. 54

4.3 Analisis Data ...................................................................................................... 55

4.3.1 Perhitungan Loss ............................................................................... 55

4.3.2 Perhitungan Daya Penerimaan Optik (Receiver) .............................. 67

4.4 Penyebab- Penyebab Gangguan Pada 3 Link ..................................................... 73

4.4.1 Penyebab Gangguan Pada Link STO Jatinegara–STO

Kebayoran 74

4.4.2 Penyebab Gangguan Pada Link STO Jatinegara – STO Semanggi. ... 75

4.4.3 Penyebab Gangguan Pada Link STO Jatinegara – STO Gambir 1 ..... 76

BAB V KESIMPULAN

DAFTAR PUSTAKA

Page 12: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

viii

DAFTAR GAMBAR

Gambar 2.1 Blok diagram prinsip kerja transmisi pada serat optik ......................... 9

Gambar 2.2 StrukturDasarKabelSeratOptik............................................................. 11

Gambar 2.3 Kabel Serat Optik ................................................................................. 13

Gambar 2.4 PerambatanGelombangpadaMultimode Step Index .............................. 13

Gambar 2.5 PerambatanGelombangpadaMultimode Graded Index ........................ 14

Gambar 2.6 PerambatanGelombangpadaSingle mode Step Index ........................... 15

Gambar 2.7 Jenis- jenis Konektor Serat Optik ....................................................... 20

Gambar 2.8 SistemWavelength Division Multiplexing ............................................ 24

Gambar 2.9 Unidirectional Ring .............................................................................. 27

Gambar 2.10 Bidirectional Ring ................................................................................ 29

Gambar 2.11 Link Point To Point dan Parameter-Parameternya .............................. 31

Gambar 3.1 Konfigurasi Sistem Komunikasi Serat Optik Arnet Jatinegara ........... 33

Gambar 3.2 Perangkat Konfigurasi Sistem Komunikasi Serat Optik ..................... 36

Gambar 3.3 Perangkat OLT ( Optical Line Terminal) ............................................ 37

Gambar 3.4 Perangkat Optical Termination Box (OTB) ........................................ 37

Gambar 3.5 Perangkat Optical Distibution Cabinet (ODC) ................................... 38

Gambar 3.6 Perangkat Optical Distibution Point (ODP) ........................................ 39

Gambar 3.7 Adaptor OTDR menyambungdenganseratoptik .................................. 43

Gambar 3.8 Hasilpengukuran OTDR jaringanbagus ............................................ 44

Gambar 3.9 Hasilpengukuran OTDR jaringan kabel optik tidak bagus ............... 45

Gambar 3.10 Macam-macamloss yang ditunjukanpadagrafik OTDR ...................... 46

Gambar 4.1 Konfigurasi Link STO Jatinegara antar STO Kebayoran, STO

Page 13: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

ix

Semanggi dan STO Gambir1 ......................................................................................... 50

Gambar 4.2 SkemaJalurTransmisiKabelOptikpada link STO Jatinegara- STO

Kebayoran ....................................................................................... 51

Gambar 4.3 SkemaJalurTransmisiKabelOptikpada link STO Jatinegara- STO

Semanggi ......................................................................................... 53

Gambar 4.4 SkemaJalurTransmisiKabelOptikpada link STO Jatinegara- STO

Gambir 1 .......................................................................................... 54

Page 14: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

x

DAFTAR TABEL

Tabel 2.1 Perbandingan LED dan Laser ................................................................... 10

Tabel 3.1 Konfigurasi Level Sinyal di 4 STO ........................................................ 34

Tabel 3.2 Data Konfigurasi 3 STO ........................................................................... 35

Tabel 4.1 Tabel hasil pengukuran loss berdasarkan pengukuran loss splice

di lapangan link STO Jatinegara – STO Kebayoran ................................ 58

Tabel 4.2 Tabel hasil pengukuran loss berdasarkan pengukuran loss splice

di lapangan link STO Jatinegara- STO Semanggi .................................. 62

Tabel 4.3 Tabel hasil pengukuran loss berdasarkan pengukuran loss splice di

lapangan link STO Jatinegara- STO Gambir 1 ........................................ 66

Tabel 4.4 Analisis perhitungan Daya Penerimaan Optik ( Receiver) Link

Jatinegara- Kebayoran ............................................................................... 68

Tabel 4.5 Analisis perhitungan Daya Penerimaan Optik ( Receiver) Link

Jatinegara- Semanggi ................................................................................. 70

Tabel 4.6 Analisis perhitungan Daya Penerimaan Optik ( Receiver)

Jatinegara- Gambir .................................................................................... 72

Page 15: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

xi

DAFTAR LAMPIRAN

Lampiran I Konfigurasi Fiber Optik Arnet Jatinegara

Konfigurasi Ring Fiber Optik Arnet Jatinegara

Lampiran II Bagian- Bagian Alat Ukur OTDR

Spesifikasi Alat Ukur OTDR YOKOGAWA tipe AQ 7260

Spesifikasi Kabel Optik G.655 dan G. 652

Spesifikasi Konektor FC 3MTM

Spesifikasi Fusion Splicer Fitel 178A

Lampiran III Standar Loss Budget standar Fiber Optic Association EIA/TIA 568

Standar Power Budget standar Fiber Optic Association

Standar Daya Transmitter dan Receiverdi ARNET

JATINEGARA

Lampiran IV Tabel Data Hasil Ukur Redaman di 3 STO

Hasil Pengukuran Jalur Transmisi Menggunakan OTDR

Hasil Pengukuran Daya Transmitter (PTx) danReceiver

(PRx) pada sistem Network Monitoring System(NMS)

Page 16: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

xii

DAFTAR SINGKATAN

ADM :Add/Drop Multipexer

Absorption :Penyerapan

APD :Avalanche Photo Diode

Core :Inti Serat Optik

Cladding :Selimut serat optik yang melidungi bagian inti

Coating :Jaket Pelindung pada serat optik

DBFA :(Dual Band Fiber Amplifier)

DDF :Digital Distribution Frame

DEMUX :Demumultiplexing

Dispersi :Pelebaran Pulsa

DWDM :Dense Wavelength Division Multiplexing

EBFA :(Extended Band Filter Amplifier)

FC : Fiber Connector

FO :Fiber Optik

Gbps :Giga Byte Per Second

GBR 1 :Gambir

Interferensi :Pengaruh

ITU :International Telecomunication Unite

JTN :Jatinegara

Page 17: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

xiii

KBB :Kebayoran

LED :Light Emitting Diode

Loss :Redaman/Rugi Rugi

LD :Laser Diode

MUX :Multiplexing

Microbending:Pembengkokan pada pembuatan Serat Optik

ODP :Optical Distribution Point

OTB :Optical Termination Board

ONT :Optical Network Terminal

ONU :Optical Network United

PIN :Possitive Intrinsic Negative

PCM :Pulse Code Modulation

PDH :Plesinkron Digital Hirarki

Patchcore :Serat Optik Penghubung

Repeater :Terminal Pengulag

Rx :Receiver

Scattering :Penyerapan

SKSO : Sistem Komunikasi Serat Optik

Splice :Titik Sambungan

STM :Synchronous Digital Hierarki

Page 18: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

1

BAB I

PENDAHULUAN

1.1. Latar Belakang Masalah

Perkembangan teknologi serat optik yang begitu cepat saat ini merupakan

bentuk gambaran bahwa semakin majunya akan penggunaan teknologi

komunikasi. PT. Telkom sebagai operator penyedia layanan informasi, salah satu

usaha yang dilakukan PT. Telkom dalam memenuhi tuntutan ini dengan beralih

menggunakan serat optik sebagai media transmisi menggantikan media transmisi

sebelumnya berupa kabel koaksial (kabel Tembaga). Penggantian media transmisi

diharapkan dapat meningkatkan kualitas dan kuantitas layanan jasa

telekomunikasi. Serat optik merupakan media transmisi menggunakan cahaya

sebagai penyalur informasi (data). Teknologi serat optik memberikan solusi

terbaik dalam teknologi komunikasi dan informasi, dimana media transmisiannya

yang begitu handal dapat mengirimkan data dalam kapasitas yang besar dan

waktu tempuh pentransmisian yang cepat serta sisi keamanan yang tinggi, yaitu

tahan terhadap gangguan-gangguan yang biasa terjadi pada kabel konvensional.

Meningkatnya kebutuhan akan komunikasi data, terutama sistem komunikasi serat

optik yang pada akhir-akhir ini berkembang pesat mendorong untuk membuat dan

mengembangkan berbagai metode dan teknologi yang dapat digunakan untuk

mengakomodasi kebutuhan dalam kapasitas besar dan kecepatan tinggi dari

sistem tersebut.

Seiring dengan peningkatan dan pengembangan menggunakan kabel serat

optik sebagai media transmisi data, maka juga sering terjadi faktor hilangnya

informasi yang diakibatkan oleh rugi–rugi yang terjadi disepanjang kabel serat

optik, salah satu rugi–rugi tersebut adalah rugi daya yang diakibatkan oleh

redaman di sepanjang kabel serat optik, yang mengakibatkan perubahan daya dari

pemancar optik (Transmitter) hingga mencapai di penerima optik (Receiver).

Perubahan daya tersebut yaitu adanya penurunan daya dari pemancar optik

(Transmitter) sampai di penerima optik (Receiver). Permasalahan redaman dan

Page 19: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

2

daya optik juga mempunyai hubungan dengan perencanaan pemasangan instalasi

sistem komunikasi kabel serat optik ketika sistem tersebut mengalami gangguan

disepanjang kabel serat optik , dalam hal ini terjadi di PT. Telkom divisi Arnet

Jatinegara di Jakarta Timur, dari data redaman dan daya yang terjadi di PT.

Telkom divisi Arnet Jatinegara di Jakarta Timur ini, maka dilakukan penelitian

untuk menganalisa kinerja sistem komunikasi serat optik yang diakibatkan oleh

redaman (loss) dan daya yang bekerja di sepanjang kabel serat optik. Redaman

(loss) bisa diakibatkan oleh panjang span serat dan banyaknya splicing

(sambungan) di sepanjang kabel serat tersebut. Juga dipengaruhi oleh dispersi,

dimana semakin bertambah jarak panjangnya lintasan maka dispersi pada serat

optik semakin jelek. Untuk mengetahui kinerja suatu jaringan teknologi serat

optik ini, harus lah dilakukan analisis terhadap hasil pemeriksaan, pengukuran dan

pengetesan konfigurasi jaringan tersebut. Pembahasan berkaitan dengan

konfigurasi jaringan serat optik yang dimiliki oleh PT Telkom divisi Arnet

Jatinegara di Jakarta Timur sebagai perusahaan penyedia jasa teknologi dan

informasi dalam satu site (shelter).

1.2. Perumusan Masalah

Dari judul tersebut, alasan pemilihan judul penulis akan membahas

mengenai permasalahn pada :

1. Bagaimana cara melakukan perhitungan dan perbandingan redaman serat

optik dan jenis kabel optik yang merujuk pada rekomendasi Fiber Optic

Association EIA/TIA 568dan spesifikasi penggunaan kabel optik

sehingga didapatkan suatu analisis penurunan kualitas daya penerima

optik (Receiver) akibat redaman kabel terhadap kinerja dari SKSO pada 3

(tiga) ruas di PT TELKOM Divisi Arnet Jatinegara.

2. Bagaimana cara menganalisa rugi-rugi (redaman) daya yang diterima oleh

penerima optik (receiver) menggunakan perhitungan secara teoritis agar

sesuai dengan nilai daya penerimaan optik (receiver) sesuai perhitungan

standar menggunakan metodeLink Power Budget.

Page 20: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

3

1.3. Tujuan

Tujuan penulisan tugas akhir ini adalah menganalisiskinerja jaringan serat

optik pada Ring 1 (Satu) di PT Telkom Area Network (Arnet) Jatinegara.

1.4. Pembatasan Masalah

Untuk mempertajam dan memfokuskan permasalahan dalam penulisan

tugas akhir ini, beberapa batasan masalah yang diambil diantaranya adalah adalah

sebagai berikut:

1. Penelitian Kinerja Jaringan Sistem Komunuikasi Serat Optik dibatasi

pada kinerja penurunan daya pada jaringan kabel serat optik pada Ring 1

di Arnet Jatinegara

2. Pada sistem kinerja jaringan serat optik data yang di ambil meliputi 3

(tiga) ruasdi PT TELKOM Arnet Jatinegara diantaranya STO Kebayoran,

STO Semanggi, dan STO Gambir1.

3. Data yang digunakan adalah data riset perangkat SDH Fujitsu di PT

TELKOM Divisi Arnet Jatinegara. Parameter yang digunakan pada analisa

redaman serat adalah : redaman jaringan kabel serat optik, nilai daya

Tx dan Rx dengan panjang gelombang 1550 nm.

1.5. Metode Penelitian

Metode penelitian yang dilakukan untuk memperoleh bahan- bahan yang

diperlukan untuk menyususn tugas kahir ini adalah metode studi literatur. Penulis

melakukan kunjungan ke beberapa perpustakaan guna mencari literatur- literatur

dan buku- buku yang berhubugan dengan tugas akhir yang penulis susun, serta

mengambil bahan dari internet. Berikut penjelasan lengkap penulis mengenai

metode penulisan :

Page 21: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

4

1. Tinjauan pustaka, mempelajari buku, artikel, dan situs-situs yang dapat

mendukung penyusunan tugas akhir ini.

2. Mengadakan riset di lingkungan PT TELKOM Arnet Jatinegara

3. Dengan metode diskusi yaitu dengan melakukan konsultasi, dialog dan tukar

pikiran dengan pembimbing lapangan di PT TELKOM Arnet Jatinegara dan

dosen pembimbing.

1.6. Sistematika Penulisan

Sistematika tugas akhir ini disusun menjadi lima bab sebagai berikut :

BAB I :PENDAHULUAN

Bab ini menguraikan tentang latar belakang, tujuan, dan sistematika penulisan.

BAB II :SISTEM KOMUNIKASI SERAT OPTIK

Pada bab ini menguraikan gambaran umum dari Sistem KomunikasiSerat Optik.

BAB III :KONFIGURASI SISTEM KOMUNIKASI SERAT OPTIK

Pada Bab ini akan membahas tentang Kofiguasi jaringan serat optik pada Ring 1

di PT Telkom divisi Arnet Jatinegara.

BAB IV :ANALISIS KINERJA JARINGAN SERAT OPTIK PADA

RING 1 DI ARNET JATINEGARA

Pada Bab ini akan membahas tentang menganalisis penuruan kualitas daya

penerimaan optik (Receiver) jaringan serat optik pada Ring 1 di PT Telkom divisi

Arnet Jatinegaradengan cara menganalisis penurunan daya penerima optik

(Receiver) menggunakan Link Power Budget.

BAB V : KESIMPULAN DAN SARAN

Pada bab terakhir ini diberikan kesimpulan dari seluruh rangkaian

penelitian yang dilakukan dan saran untuk pengembangan selanjutnya.

Page 22: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

5

BAB II

SISTEM KOMUNIKASI SERAT OPTIK

2.1. Teknologi Serat Optik

Perkembangan teknologi telekomunikasi memungkinkan penyediaan

sarana telekomunikasi dalam biaya relatif rendah, mutu pelayanan tinggi, cepat,

aman, dan juga kapasitas besar dalam menyalurkan informasi.Seiring dengan

perkembangan telekomunikasi yang cepat maka kemampuan sistem transmisi

dengan menggunakan teknologi serat optik semakin dikembangkan, sehingga

dapat menggeser penggunaan sistem transmisi konvensional dimasa mendatang,

terutama untuk transmisi jarak jauh.

Dampak dari perkembangann teknologi ini adalah perubahan jaringan

analog menjadi jaringan digital baik dalam sistem switching maupun dalam sistem

transmisinya. Hal ini akan meningkatkan kualitas dan kuantitas informasi yang

dikirim, serta biaya operasi dan pemeliharaan lebih ekonomis. Sebagai sarana

transmisi dalam jaringan digital, serat optik berperan sebagai pemandu gelombang

cahaya.Serat optik dari bahan gelas atau silika dengan ukuran kecil dan sangat

ringan dapat mengirimkan informasi dalam jumlah besar dengan rugi-rugi relatif

rendah.

Penggunaan cahaya sebagai pembawa informasi sebenarnya sudah banyak

digunakan sejak zaman dahulu, baru sekitar tahun 1930-an para ilmuwan Jerman

mengawali eksperimen untuk mentransmisikan cahaya melalui bahan yang

bernama serat optik.

Perkembangan selanjutnya adalah ketika para ilmuawan inggris pada

tahun 1958 mengusulkan prototipe serat optik yang sampai sekarang dipakai yaitu

yang terdiri atas gelas inti yang dibungkus oleh gelas lainnya. Sekitar awal tahun

1960-an perubahan fantastis terjadi di Asia yaitu ketika para ilmuwan Jepang

berhasil membuat jenis serat optik yang mampu mentransmisikan gambar.

Page 23: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

6

Di lain pihak para ilmuwan selain mencoba untuk memandu cahaya

melewati gelas (serat optik) namun juga mencoba untuk ”menjinakkan” cahaya.

Kerja keras itupun berhasil ketika sekitar 1959 laser ditemukan.Laser beroperasi

pada daerah frekuensi tampak sekitar 1014 Hertz- 15 Hertz atau ratusan ribu kali

frekuensi gelombang mikro.

Pada awalnya peralatan penghasil sinar laser masih serba besar dan

merepotkan. Selain tidak efisien, ia baru dapat berfungsi pada suhu sangat rendah.

Laser juga belum terpancar lurus.Pada kondisi cahaya sangat cerah pun,

pancarannya gampang meliuk-liuk mengikuti kepadatan atmosfer.Waktu itu,

sebuah pancaran laser dalam jarak 1 km, bisa tiba di tujuan akhir pada banyak

titik dengan simpangan jarak hingga hitungan meter. Sekitar tahun 60-an

ditemukan serat optik yang kemurniannya sangat tinggi, kurang dari 1 bagian

dalam sejuta. Dalam bahasa sehari-hari artinya serat yang sangat bening dan tidak

menghantar listrik ini sedemikian murninya, sehingga konon, seandainya air laut

itu semurni serat optik, dengan pencahayaan cukup kita dapat menonton lalu-

lalangnya penghuni dasar Samudera Pasifik.

Seperti halnya laser, serat optik pun harus melalui tahap-tahap

pengembangan awal. Sebagaimana medium transmisi cahaya, ia sangat tidak

efisien. Hingga tahun 1968 atau berselang dua tahun setelah serat optik pertama

kali diramalkan akan menjadi pemandu cahaya, tingkat atenuasi (kehilangan)-nya

masih 20 dB/km. Melalui pengembangan dalam teknologi material, serat optik

mengalami pemurnian, dehidran dan lain-lain.Secara perlahan tapi pasti

atenuasinya mencapai tingkat di bawah 1 dB/km.

Tahun 80-an, bendera lomba industri serat optik benar-benar sudah

berkibar.Nama-nama besar di dunia pengembangan serat optik

bermunculan.CharlesK.Kao diakui dunia sebagai salah seorang perintis

utama.Dari Jepang muncul Yasuharu Suematsu.Raksasa-raksasa elektronik

macam ITT atau STL jelas punya banyak sekali peranan dalam mendalami riset-

riset serat optik.

Page 24: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

7

2.2. Pengertian Sistem Komunikasi Serat Optik

Sistem Komunikasi Serat Optik adalah suatu sistem Komunikasi yang

menggunakan Kabel Serat Optik sebagai media transmisinya yang dapat

menyalurkan informasi dengan kapasitas besar dan tingkat keandalan yang tinggi,

berbeda dengan media transmisi lainnya serat optik tidak menggunakan

gelombang elektromagnetik/listrik sebagai gelombang pembawanya melainkan

menggunakan sumber optik, detector optik, dan serat optik dengan panjang

gelombang cahaya 850nm, 1.300nm, dan 1550nm.

2.3. Prinsip kerja Sistem Komunikasi Serat Optik

Berbeda dengan sistem transmisi yang menggunakan gelombang

elektromagnetik, pada sistem transmisi serat optik yang bertugas membawa sinyal

informasi adalah gelombang cahaya. Berikut ini adalah proses yang terjadi pada

sistem transmisi serat optik dengan sinyal yang ditransmisikan berupa sinyal

suara. Pertama-tama mikrofon mengubah sinyal suara menjadi sinyal listrik.

Sinyal listrik ini kemudian dibawa oleh gelombang cahaya melalui serat optik

dari pengirim (transmitter) menuju alat penerima (receiver) yang terletak pada

ujung lain dari serat. Sinyal listrik termodulasi diubah menjadi gelombang cahaya

pada transmitter dan kemudian diubah kembali menjadi sinyal listrik pada

receiver. Pada receiver sinyal listrik diubah menjadi gelombang suara.Tugas

untuk mengubah sinyal listrik ke gelombang cahaya atau sebaliknya dapat

dilakukan dengan menggunakan komponen elektronik yag dikenal dengan nama

Optoelectronic pada setiap ujung serat optik.

Page 25: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

8

Prinsip kerja transmisi pada serat optik dapat dilihat pada blok diagram pada

gambar 2.1 :

Sumber OptikKabel Serat

OptikDetektor Optik

Rangkaian

Elektronik

Multiplex Digital

Rangkaian

Elektronik

DeMultiplex Digital

Gambar 2.1 Blok diagram prinsip kerja transmisi pada serat

optik[10]

Berikut ini penjelasan dari blok diagram di atas :

pada arah kirim, input sinyal yang berasal dari perangkat multiplex digital

akan diteruskan ke rangkaian elektronik untuk menjalani perbaikan karakteristik

dan mengubah kode sinyal yang masuk tersebut menjadi binary;

selanjutnya sinyal binary tersebut diteruskan ke rangkaian sumber optik,

dimana dalam rangkaian ini sinyal binary dengan daya listrik akan diubah

menjadi sinyal dengan daya optik;

dari sumber optik, kemudian sinyal akan diteruskan ke detektor optik

melalui kabel serat optik;

pada arah terima, sinyal dengan daya optik yang diterima dari sumber

optik melalui kabel serat optik akan diubah menjadi sinyal dengan daya listrik;

selanjutnya sinyal dengan daya listrik tersebut diteruskan ke rangkaian

elektronik untuk didekodekan kembali ke sinyal;

Page 26: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

9

dari rangkaian elektronik, sinyal tersebut diteruskan ke demultipleks

digital.

Dalam perjalanan dari transmiter menuju ke receiver akan terjadi redaman/rugi

cahaya di sepanjang kabel serat optik dan konektor-konektornya. Oleh sebab itu,

bila jarak antara transmiter dan receiver ini terlalu jauh akan diperlukan sebuah

atau beberapa perangkat pengulang (regenerative repeater) yang bertugas untuk

memperkuat gelombang cahaya yang telah mengalami redaman.

2.3.1. Pemancar Optik (Optical transmitter)

Transmitter terdiri dari 2 bagian yaitu :

Rangkaian elektrik berfungsi untuk mengkonversi dari sinyal digital

menjadi sinyal analog, selanjutnya data tersebut disisipkan ke dalam sinyal

gelombang optik yang telah termodulasi

Sumber gelombang optik berupa sinar Laser Diode (LD) dan LED (light

emmiting diode) yang pemakaiannya disesuaikan dengan sistem

komunikasi yang diperlukan.

a.) Laser Diode (LD) dapat digunakan untuk sistem komunikasi optik

yang sangat jauh seperti Sistem Komunikasi Kabel Laut (SKKL) dan

Sistem Komunikasi Fiber Optik (SKSO), oleh karena laser LD memiliki

karakteristik yang handal, dimana dapat memancarkan daya dengan

intensitas yang tinggi, stabil, hampir monokromatis, terfokus, dan

merambat dengan kecepatan sangat tinggi sehingga dapat menempuh jarak

sangat jauh.Pembuatannya sangat sulit karena memerlukan spesifikasi

tertentu sehingga harganyapun mahal.Jadi LD tidak ekonomis dan tidak

efisien jika digunakan untuk sistem komunikasi jarak dekat dan pada trafik

kurang padat.

b.) Light Emmiting Diode (LED) digunakan untuk sistem komunikasi

jarak sedang dan dekat agar sistem dapat ekonomis dan efektif,

Page 27: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

10

karena Light Emmiting Diode lebih mudah pembuatannya, sehingga

harganya pun lebih murah.

Tabel 2.1 Perbandingan LED dan Laser[1]

2.3.2. Repeater

Berfungsi untuk menguatkan kembali pulsa-pulsa cahaya yang dikirimkan.

Untuk hubungan yang sangat jauh, pulsa cahaya yang dikirimkan akan mengalami

loss yang besar sehingga apabila diteruskan tidak dapat dideteksi oleh

photodetector, maka untuk itu diperlukan repeater. Pada umumnya digunakan

untuk komunikasi serat optik antar kota yang membutuhkan repeater setiap 50

km. Repeater terlebih dahulu mengubah pulsa cahaya menjadi listrik kemudian

Karakteristik LED LASER DIODE

Spektrum keluaran Tidak koheren Koheren

Daya Optik keluaran Lebih rendah (0,4-4,0mW) Lebih tinggi (1,5-8,0mW)

Kestabilan operasi terhadap

temperatur Lebih stabil Kurang stabil

Penguatan cahaya Tidak ada Ada

Arah pancaran cahaya Kurang terarah Sangat terarah

Arus pacu Kecil Besar

Disipasi panas Kecil Besar

Harga Lebih murah Lebih mahal

Kemudahan penggunaan Lebih mudah Lebih sulit

Kecepatan (rise time) Lebih lambat (2 – 10 ns) Lebih cepat (0,3 – 0,7 ns)

Panjang gelombang 800-850, 1300 nm 800-850, 1300, 1500 nm

Lebar pita (nm) 30-60 (λ = 800-850 nm)

50-150 (λ=1300)

1-2 (λ = 800-850 nm)

2-5 (λ = 1300 nm)

2-10 (λ = 1500 nm)

Daya ke serat 0,03 – 0,15 mW 0,4 – 3,0 mW

Frekuensi modulasi 0,08 – 0,3 Ghz 2 – 3 GHz

Kepekaan - Elektrostatik

Page 28: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

11

sinyal listrik tersebut diperkuat dan baru diubah kembali menjadi pulsa cahaya

untuk dikirimkan.

2.3.3. Detektor Optik

Photodetector berfungsi mengubah variasi intensitas optik/cahaya menjadi

variasi arus listrik. Photodioda dioperasikan pada pra-tegangan balik. Cahaya

yang diterima akan diubah menjadi arus listrik, pada tahanan RL arus tersebut

diubah menjadi besaran tegangan. Perbandingan arus yang dihasilkan

photodetector terhadap daya optical yang diterima disebut sensitivitas optik.

Sensitivitas suatu photodetector sangat bergantung pada panjang gelombang

operasi dan bahan photodetector.

2.4. Serat Optik

Serat optik terbuat dari bahan dielektrik yang berbentuk seperti kaca

(glass). Didalam serat inilah energi listrik diubah menjadi cahaya yang akan

ditransmisikan sehingga dapat diterima di ujung unit penerima (receiver) melalui

transducer. Pada Gambar 2.2 dapat dilihat struktur dasar kabel serat optik.

Gambar 2.2 Struktur Dasar Kabel Serat Optik[2]

Struktur serat optik terdiri dari: 1. Inti (core)

Page 29: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

12

Bagian yang paling utama dinamakan bagian inti (core), dimana

gelombang cahaya yang dikirimkan akan merambat dan mempunyai indeks bias

lebih besar dari lapisan kedua. Terbuat dari kaca (glass) yang berdiameter antara

2µm-125µm, dalam hal ini tergantung dari jenis serat optiknya.

2. Cladding

Cladding berfungsi sebagai cermin yaitu memantulkan cahaya agar

dapatmerambat ke ujung lainnya.Dengan adanya cladding ini cahaya dapat

merambat dalam core serat optik.Cladding terbuat dari bahan gelas dengan indeks

bias yang lebih kecil dari core. Cladding merupakan selubung dari core. Diameter

cladding antara 5µm-250µm, hubungan indeks bias antaracore dan cladding

akanmempengaruhi perambatan cahaya pada core (yaitumempengaruhi besarnya

sudut kritis).

3. Jaket (coating)

Coating berfungsi sebagai pelindung mekanis pada serat optik dan

identitaskode warna terbuat dari bahan plastik.Berfungsi untuk melindungi serat

optik dari kerusakan.

Sebuah kabel serat optik dibuat sekecil-kecilnya (mikroskopis) agar tidak

mudah patah/retak, tentunya dengan perlindungan khusus sehingga besaran wujud

kabel akhirnya tetap mudah dipasang. Satu kabel serat optik disebut sebagai core.

Untuk satu sambungan/ link komunkasi serat optik dibutuhkan dua core, satu

sebagai transmitter dansatu lagi sebagai receiver. Variasi kabel yang dijual sangat

beragam sesuai kebutuhan, ada kabel 4 core, 6 core, 8 core, 12 core, 16 core,

24core, 36 core, 48 core, 72 core hingga 96 core. Satu core serat optik yang

terlihat oleh mata kita adalah masih berupa lapisan perlindungnya (coated)

sedangkan kacanya sendiri menjadi inti transmisi data berukuran mikroskopis

yang tak terlihat oleh mata. Berikut gambar kabel optik yang terlihat pada gambar

2.3.

Page 30: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

13

Gambar 2.3 Kabel Serat Optik [13]

Karakteristik Komunikasi Serat Optik

Serat optik terdiri dari beberapa jenis, yaitu :

1) Multimode Step Index fiber

Pada jenis multimode step indexfiberini, diameter core lebih besar dari

diameter cladding. Dampak dari besarnya diameter core menyebabkan rugi-rugi

dispersi waktu transmit-nya besar.Penambahan presentase bahan silica pada

waktu pembuatan tidak terlalu berpengaruh dalam menekan rugi-rugi dispersi

waktu pengiriman.Gambar 2.4 menunjukkan perambatan gelombang dalam serat

optik multimode stepindex.

Gambar 2.4 Perambatan Gelombang pada Multimode Step Index [2]

Multimode Step Index mempunyai karakteristik sebagai berikut :

• Indeks bias inti konstan.

• Ukuran inti besar (50mm) dan dilapisi cladding yang sangat tipis.

• Penyambungan kabel lebih mudah karena memiliki inti yang besar.

Page 31: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

14

• Sering terjadi dispersi.

• Hanya digunakan untuk jarak pendek dan transmisi data bit rate rendah.

Susunan serat optik dari type multimode Step Indeks, yaitu :

Diameter inti (core) : 200-300μm

Diameter selimut ( cladding) :380-440μm

Diameter jaket (coating) :250-1000μm

Numerical Aperture :0,16-0,5

Redaman :4-6dB/km

Lebar pta frekuensi (bandwith) :4-6Mhz

2) Multimode Graded Index

Pada jenis serat optik multimode graded index ini. Core terdiri dari

sejumlah lapisan gelas yang memiliki indeks bias yang berbeda, indeks bias

tertinggi terdapat pada pusat core dan berangsur-angsur turun sampai ke batas

core-cladding. Akibatnya dispersi waktu berbagai mode cahaya yang merambat

berkurang sehingga cahaya akan tiba pada waktu yang bersamaan. Gambar 2.5

menunjukkan perambatan gelombang dalam multimode graded index.

Gambar 2.5 Perambatan Gelombang pada Multimode Graded Index [2]

Multimode Graded Index mempunyai karakteristik sebagai berikut :

• Cahaya merambat karena difraksi yang terjadi pada core sehingga

rambatan cahaya sejajar dengan sumbu serat.

Page 32: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

15

• Dispersi minimum sehingga baik jika digunakan untuk jarak menengah

• Ukuran diameter core antara 30 µm – 60 µm. lebih kecil dari multimodestep

Index dan dibuat dari bahan silica glass.

• Harganya lebih mahal dari serat optik Multimode Step Index karena proses

pembuatannya lebih sulit.

Susunan serat optik type Multimode Grade Indeks yaitu :

Diameter inti (core) :50-100μm (standar 50 μm)

Diameter selimut (cladding) :100-150μm(standard 125μm)

Diameter jaket (coating ) :250-1000μm

Numerical Aperture : 0,2-0,3

Redaman :0,3-3,5 dB/km

Lebar pita frekuensi(bandwidth) :150 MHz-2Ghz

3) Single mode Step Index

Pada jenis single mode step index. Baik core maupun cladding-nya dibuat

dari bahan silica glass.Ukuran core yang jauh lebih kecil dari cladding dibuat

demikian agar rugi-rugi transmisi berkurang akibat fading.Seperti ditunjukan

gambar 2.6.

Gambar 2.6 Perambatan Gelombang pada Single mode Step Index [2]

Page 33: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

16

Singlemode Step Index mempunyai karakteristik sebagai berikut :

• Serat optik Singlemode Step Index memiliki diameter core yang sangat kecil

dibandingkan ukuran cladding-nya.

• Ukuran diameter core antara 2 µm – 10µm.

• Cahaya hanya merambat dalam satu mode saja yaitu sejajar dengan sumbu

serat optik.

• Memiliki redaman yang sangat kecil.

• Memiliki bandwidth yang lebar.

• Digunakan untuk transmisi data dengan bit rate tinggi.

• Dapat digunakan untuk transmisi jarak dekat, menengah dan jauh.

Susunan dari serat optik type Singlemode, yaitu :

Diameter inti (core) :20-10μm

Diameter selimut ( cladding) :50-125μm

Diameter jaket (coating) :250-1000μm

Numerical Aperture : 0,08-0,15

Redaman :0,2-0,5dB/km

Lebar pita frekuensi (bandwith) :>150Mhz

2.5. Redaman Serat Optik

Tahanan dari konduktor tembaga menyebabkan hilangnya sebagian dari

energi listrik yang mengalir dari suatu kabel.Core dari kabel serat optik menyerap

sebagian dari energi cahaya.Hal ini dinyatakan dalam redaman kabel.Satuan yang

digunakan untuk redaman serat optik adalah dB/km. redaman tergantung dari

Page 34: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

17

beberapa keadaan.Tetapi yang utama adalah bahwa redaman tergantung pada

panjang gelombang dari cahaya yang digunakan.

Menurut rekomendasiFiber Optic Association EIA/TIA 568, kabel serat

optik harus mempunyai koefisien redaman 0,5 dB/km untuk panjang gelombang

1310 nm dan 0,4 dB/km untuk panjang gelombang 1550 nm. Tapi besarnya

koefisien ini bukan merupakan nilai yang mutlak, karena harus

mempertimbangkan proses pabrikasi, desain & komposisi fiber, dan desain kabel.

2.5.1. Faktor Intrinsik

Ada beberapa faktor intrinsik dari serat optik yang menyebabkan redaman, yaitu:

1. Absorption (penyerapan), peristiwa ini terjadi akibat ketidak murnian

bahanfiber optik yang digunakan. Bila cahaya menabrak sebuah partikel dari

unsur yang tidak murni maka sebagian dari cahaya tersebut akan terserap.

2. Scattering (penghamburan) terjadi akibat adanya berkas cahaya yangmerambat

dalam materi dipancarkan/dihamburkan ke segala arah dikarenakan struktur

materi yang tidak murni. Biasanya scattering ini terjadi pada lokasi-lokasi

tertentu saja di dalam bahan, dan ukuran daerah yang terkena pengaruh

perubahan efek terpencarnya cahaya sangat kecil, yaitu kurang dari satu

panjang gelombang cahaya.

3. Microbending (pembengkokan pada saat pembuatan serat optik)

Pada umumnya timbul di dalam proses manufaktur. Penyebab yang biasa

dijumpai adalah perbedaan laju pemuaian (dan penyusutan) antara serat optik

dan lapisan-lapisan pelindung luarnya (jaket). Ketika kabel serat optik

Page 35: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

18

menjaditerlalu dingin, lapisan jaket maupun bagian inti/mantel akan

mengalami penyusutan dan memendek sehingga dapat bergeser dari posisi

relatifnya semula dan menimbulkan lekukan-lekukan yang disebut microbend.

2.5.2. Faktor Ekstrinsik

Ada beberapa faktor ekstrinsik dari serat optik yang menyebabkan redaman,

yaitu:

1. Frasnel Reflection terjadi karena ada celah udara sehingga cahaya

harusmelewati dua interface yang memantulkan sebagian karena perubahan

index bias dari inti ke udara dan inti lagi.

2. Mode Copling terjadi karena adanya sambungan antara sumber/detector

optikdengan serat optik. Macrobending, lekukan tajam pada sebuah kabel

serat optik dapatmenyebabkan timbulnya rugi daya yang cukup serius,

dan lebih jauh lagi kemungkinan terjadinya kerusakan mekanis

(pecahnya serat optik). Rugi daya yang ditimbulkan dengan

melengkungkan sepotong pendek serat optik boleh jadi lebih besar dari

rugi daya total yang timbul pada seluruh kabel serat optik sepanjang 1 km

yang dipasang secara normal.

2.5.3 Redaman Penyambungan Redaman pada kimunikasi serat optik dapat terjadi akibat penyambungan

serat optik di lapagan :

1. Splice :

Sambungan yang sifatnya permanen

Digunakan untuk menyambugkan dua buah serat optik yang patah atau

Page 36: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

19

disambung untuk perpanjangan serat.

Teknik metode lebur ( fusion splice ), dilakukan dengan meleburkan ujung-

ujung dari serat optik yang akan disambung dengan laser.

2. Konektor

Konektor adalah sebuah alat mekanik yang menjulang pada ujung sebuah

fiber optik, sumber cahaya, dan penerima sinyal.Hal itu juga mengijinkan untuk

menggabungkan dengan alat yang serupa.Pemancar (transmitter) mengirimkan

informasi secara jelas dari fiber optik melalui sebuah konektor.Konektor harus

menyalakan dan mengumpulkan cahaya, mudah dipasang maupun dilepaskan dari

peralatan.Konektor juga berfungsi untuk menyambung atau memutuskan

koneksi.Ada beberapa jenis konektor yang sering digunakan dalam teknologi fiber

optik

Biconic: Salah satu konektor yang kali pertama muncul dalam komunikasi fiber

optik. Saat ini sangat jarang digunakan.

D4: Konektor ini hampir mirip dengan FC hanya berbeda ukurannya saja.

Perbedaannya sekitar 2 mm pada bagianferrule-nya.

FC: Digunakan untuk kabel single mode dengan akurasi yang sangat tinggi dalam

menghubungkan kabel dengan transmitter maupun receiver. Konektor ini

menggunakan sistem drat ulir dengan posisi yang bisa diatur, sehingga ketika

dipasangkan ke perangkat, akurasinya tidak akan mudah berubah.

SC: Digunakan untuk kabel single mode dan bisa dicopot pasang. Konektor ini

tidak terlalu mahal, simpel, dan dapat diatur secara manual akurasinya dengan

perangkat.

SMA: Konektor ini merupakan pendahulu dari konektor ST yang sama-sama

menggunakan penutup dan pelindung. Namun seiring dengan berkembangnya ST

konektor, maka konektor ini sudah tidak berkembang lagi penggunaannya.

ST: Bentuknya seperti bayonet berkunci hampir mirip dengan konektor BNC.

Sangat umum digunakan baik untuk multi mode maupun single mode kabel.

Sangat mudah digunakan baik dipasang maupun dicabut.

Page 37: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

20

Gambar 2.7 Jenis- jenis Konektor Serat Optik[1]

Sifat-sifat konektor :

Sambungan yang sifatnya tidak pemanen

Menyambungkan serat optik dengan perangkat agar mudah dilepas dan dipasang

lagi

Menggunakan latyang disebut konektor

Konektor kabel optik terdiri dari empat jenis konektor model SC dan FC

yang dapat disesuaikan dengan jenis perangkat yang digunakan.

2.5.4 Dispersi

Dispersi adalah pelebaran pulsa yang terjadi ketika sinyal merambat

melaluisepanjang serat optik yang disebabkan oleh keterbatasan material dan efek

linear seperti polarisasi, material dan lainnya. Faktor dispersi ini akan

mempengaruhi kualitas sinyal yang akan ditransmisikan dalam jaringan.

Dispersiakan menyebabkan pulsa-pulsa cahaya memuai dan menjadi lebih lebar,

sehingga pada akhirnya mengakibatkan pulsa-pulsa tersebut saling tumpang tindih

dengan satu sama lain. Jenis dispersi pada serat optik yang disebabkan oleh

mekanisme yang berbeda, yaitu:

Page 38: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

21

a. Dispersi Intermodal

Cahaya dari sumber masuk ke dalam serat optik multimode dirambatkan

dalam beberapa mode.Setiap mode ada yang merambat sejajar sumbu inti dan ada

pula yang merambat zig-zag. Dengan demikian jarak yang ditempuh oleh tiap

mode akan berbeda-beda. Dispersi intermodal disebut juga pelebaran pulsa.

b. Dispersi Kromatik

Dispersi material terjadi karena indeks bias bervariasi sebagai fungsi

panjanggelombang optik. Salah satu dispersi yang paling dominan dalam jaringan

optik adalah dispersi kromatik.Akibat pengaruh dispersi kromatik maka

digunakan DCF (Dispersion Compensating Fiber) sebagai pengkompensasi

akumulasi dispersi.DCF merupakan serat optik dengan panjang tertentu yang

dibuat dari material yang memiliki koefisien dispersi kromatik yang khusus pada

panjang gelombang operasinya.Koefisien dispersi kromatik ini bernilai negatif

dan bernilai lebih besar per unit panjangnya dibandingkan dengan koefisien

dispersi dari serat optik yang digunakan sistem.Dengan karakteristik ini, maka

panjang DCF yang cukup pendek dapat mengkompensasi akumulasi dispersi

kromatik pada serat optik yang digunakan sistem.

c. Dispersi Bumbung Gelombang (Waveguide Dispersion)

Dispersi ini terjadi akibat dari karakteristik perambatan mode sebagai

fungsiperbandingan antara jari-jari inti serat dan panjang gelombang.

d. Dispersi Mode Polarisasi

Penyebab utamanya adalah ketidaksimetrisan bentuk serat optik akibat adanya

tekanan saat pengkabelan, ataupun saat instalasi.Dispersi mode polarisasi pun

akan meningkat dengan bertambahnya usia kabel optik.

Page 39: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

22

2.6 Penerimaan Optik (Optical Receiver)

Dalam sistem komunkasi serat optik pada sisi penerima yang terpenting

adalah detektor optik. Fungsi dari suatu detektor optik adalah mengubah sinyal

optik menjadi sinyal listrik. Perangkat ini berada di ujung depan dari penerimaan

optik sehingga memerlukan kinerja yang tinggi, Persyaratan yang harus dipenuhi

oleh photodiode meliputi :

Memilki sensitivitas yang tinggi

Mempunyai bandwith yang lebar dan respon time yang cepat

Hanya memberikan tambahan noise yang kecil

Tidak peka terhadap suhu

Pada sistem transmisi serat optik digunakan dua jenis photodetrctor yaitu:

a) Diode PIN ( Positive Intrinstic Negative )

Untuk komunikasi jarak pendek lebih efisien jika menggunakan detektor

Diode PIN, karena PIN baik digunakan untuk bit rate rendah dan sensitivitasnya

tinggi untuk LED.

b) APD (Avalanche Photo-Diode)

Untuk komunikasi jarak jauh digunakan detektor APD yang dapat bekerja

pada panjang gelombang 1330nm dan 1500 nm dengan kualitas yang baik,

Artinya detektor APD mempunyai respons yang tinggi terhadap sinar Laser Diode

sebagai pe,bawa gelombang optik informasi. Pada perangkat Fujitsu yang

digunakan dalah piranti APD karena memiliki ketanggapan yang lebih baik dari

photodetector PIN.

2.7 Keuntungan dan Kerugian Serat Optik

Adapun keuntungan dari kabel serat optik, yaitu:

1. Mempunyai lebar pita frekuensi (bandwith yang lebar).Frekuensi pembawa

Page 40: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

23

optik bekerja pada daerah frekuensi yang tinggi yaitu sekitar 1013

Hz

sampai dengan 1016

Hz, sehingga informasi yang dibawa akanmenjadi

banyak.

2. Redaman sangat rendah dibandingkan dengan kabel yang terbuat dari

tembaga, terutama pada frekuensi yang mempunyai panjang gelombang

sekitar 1300 nm yaitu 0,2 dB/km.

3. Kebal terhadap gangguan gelombang electromagnet.Fiber optik terbuat

dari kaca atau plastik yang merupakan isolator, berarti bebas dari

interferensi medan magnet, frekuensi radio dan gangguan listrik.

4. Dapat menyalurkan informasi digital dengan kecepatan tinggi.

Kemampuan fiber optik dalam menyalurkan sinyal frekuensi tinggi,

sangat cocok untuk pengiriman sinyal digital pada sistem multipleks

digital dengan kecepatan beberapa Mbit/s hingga Gbit/s

5. Ukuran dan berat fiber optik kecil dan ringan.Diameter inti fiber optik

berukuran micro sehingga pemakaian ruangan lebih ekonomis.

6. Tidak mengalirkan arus listrik. Terbuat dari kaca atau plastik sehingga

tidak dapat dialiri arus listrik (terhindar dari terjadinya hubungan

pendek)

7. Sistem dapat diandalkan (20 – 30 tahun) dan mudah pemeliharaannya.

Adapun kerugian yang terdapat pada kabel serat optik, yaitu:

1. Konstruksi fiber optik lemah sehingga dalam pemakaiannya

diperlukanlapisan penguat sebagai proteksi.

2. Karakteristik transmisi dapat berubah bila terjadi tekanan dari luar yang

berlebihan

3. Tidak dapat dialiri arus listrik, sehingga tidak dapat memberikan catuan

pada pemasangan repeater.

2.8 DWDM ( DenseWavelength Division Multiplexing )

Pengertian DWDM Dense Wavelength Division Multiplexing (DWDM)

Page 41: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

24

merupakan suau teknik transmisi yang yang memanfaatkan cahaya dengan

panjang gelombang yang berbeda-beda sebagai kanal-kanal informasi, sehingga

setelah dilakukan proses multiplexing seluruh panjang gelombang tersebut dapat

ditransmisikan melalui sebuah serat optic. Gambar Prinsip dasar system DWDM

Teknologi DWDM adalah teknologi dengan memanfaatkan sistem SDH

(Synchoronous Digital Hierarchy) yang sudah ada (solusi terintegrasi) dengan

memultiplekskan sumber-sumber sinyal yang ada.

Menurut definisi, teknologi DWDM dinyatakan sebagai suatu teknologi

jaringan transport yang memiliki kemampuan untuk membawa sejumlah panjang

gelombang (4, 8, 16, 32, dan seterusnya) dalam satu fiber tunggal.Artinya, apabila

dalam satu fiber itu dipakai empat gelombang, maka kecepatan transmisinya

menjadi 4x10 Gbs (kecepatan awal dengan menggunakan teknologi SDH).

Teknologi DWDM beroperasi dalam sinyal dan domain optik dan memberikan

fleksibilitas yang cukup tinggi untuk memenuhi kebutuhan akan kapasitas

transmisi yang besar dalam jaringan. Kemampuannya dalam hal ini diyakini

banyak orang akan terus berkembang yang ditandai dengan semakin banyaknya

jumlah panjang gelombang yang mampu untuk ditramsmisikan dalam satu fiber. 4

Pada perkembangan selanjutnya, teknologi DWDM ini tidak saja

dipergunakan pada jaringan utama (backbone), melainkan juga pada jaringan

akses di kota-kota metropolitan di seluruh dunia, seperti halnya New York yang

memiliki distrik bisnis yang terpusat. Alasan utama yang mendorong penggunaan

DWDM pada jaringan akses ini tentu saja kemampuan sehelai serat optik yang

sudah mampu mengakomodasikan puluhan bahkan ratusan panjang-

gelombang.Sehingga, setiap perusahaan penyewa dapat memiliki 'jaringan'

masing-masing.

Gambar 2.8 Sistem Wavelength Division Multiplexing [4]

Page 42: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

25

Pada sisi kanan terdapat 5 sinyal yang dipisahkan dalam sebuah

demultiplekser dan dirutekan ke setiap penerima masing – masing.Receiver

bersifat color-blind dalam merespon secara sama untuk semua panjang

gelombang.Receiver dapat mendeteksi semua panjang gelombang yang masuk.

Ini artinya, bahwa sinyal – sinyal tersebut harus benar – benar terpisah pada

bagian multiplekser, karena jika terjadi perbedaan panjang gelombang antar 2 atau

lebih yang masuk, maka pada keluaran receiver akan dianggap sebagai sebuah

noise. Sebagai contoh, jika λ4masuk pada receiver 5, maka receiver secara

bersamaan akan memasukkan λ4 padakanal 5 sebagai λ5.Ini menyebabkan

terjadinya interferensi dengan sinyal λ5 yangasli.Add - drop multiplekser ialah

sebuah multiplekser yang berfungsi untukmengeluarkan 1 atau lebih panjang

gelombang dari gabungan transmisi sinyal optik.Add – drop multiplekser dapat

melakukan drop ke suatu lokasi tujuan. Ia juga dapatmelakukan add sinyal

tersebut, sehingga dapat ditransmisikan kembali pada midpoint station. Pada

Gambar 2.7 dapat kita lihat penambahan sinyalλ4setelah sinyaltersebut di-drop

terlebih dahulu.

Pada teknologi DWDM, terdapat beberapa komponen utama yang harus

ada untuk mengoperasikan DWDM dan agar sesuai dengan standart channel

ITU sehingga teknologi ini dapat diaplikasikan padabeberapa jaringan optic

seperti SONET dan yang lainnya. Komponen-komponennya adalah sbb:

1. Transmitter yaitu komponen yang menjembatani antara sumber sinyal

informasi dengan multiplekser pada system DWDM. Sinyal dari transmitter ini

akan dimultipleks untuk dapat ditansmisikan.

2. Receiver yaitu komponen yang menerima sinyal informasi dari demultiplekser

untuk dapat dipilah berdasarkan macam-macam informasi.

3. DWDM terminal multiplexer, Terminal mux sebenarnya terdiri dari transponder

converting wavelength untuk setiap signal panjang gelombang tertentu yang

akan dibawa. Transponder converting wavelength menerima sinyal input optic

(sebagai contoh dari system SONET atau yang lainnya), mengubah sinyal

Page 43: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

26

tersebut menjadi sinyal optic dan mengirimkan kembali sinyal tersebut

menggunakan pita laser 1550 nm.Terminal mux juga terdiri dari multiplekser

optikal yang mengubah sinyal 550 nm dan menempatkannya pada suatu fiber

SMF-28.

4. Intermediate optical terminal (amplifier), Komponen ini merupakan amplifier

jarak jauh yang menguatkan sinyal dengan banyak panjang gelombang yang

ditransfer sampai sejauh 140 km atau lebih. Diagnostik optikal dan telemetry

dimasukkan di sekitar daerah amplifier ini untuk mendeteksi adanya kerusakan

dan pelemahan pada fiber. Pada proses pengiriman sinyal informasi pasti

terdapat atenuasi dan dispersi pada sinyal informasi yang dapat melemahkan

sinyal. Oleh karena itu harus dikuatkan.Sistem yang biasa dipakai pada fiber

amplifier ini adalah system EDFA, namun karena bandwith dari EDFA ini

sangat kecil yaitu 30 nm (1530 nm-1560 nm), namun minimum attenuasi

terletak pada 1500 nm sampai 1600 nm. Kemudian digunakan DBFA (Dual

Band Fiber Amplifier) dengan bandwidth 1528 nm to 1610 nm.Kedua jenis

amplifier ini termasuk jenis EBFA (Extended Band Filter Amplifier) dengan

penguatan yang tinggi, saturasi yang lambat dan noise yang rendah. Teknologi

amplifier optic yang lain adalah system Raman Amplifier yang merupakan

pengembangan dari system EDFA.

5. DWDM terminal demux, Terminal ini mengubah sinyal dengan banyak panjang

gelombang menjadi sinyal dengan hanya 1 panjang gelombang dan

mengeluarkannya ke dalam beberapa fiber yang berbeda untuk masing-masing

client untuk dideteksi. Sebenarnya demultiplexing ini beritndak pasif, kecuali

untuk beberapa telemetry seperti system yang dapat menerima sinyal 1550 nm.

6. Optikal supervisory channel, Ini merupakan tambahan panjang gelombang

yang selalu ada di antara 1510 nm-1310 nm. OSC membawa informasi optik

multi wavelength sama halnya dengan kondisi jarak jauh pada terminal optic

atau daerah EDFA. Jadi OSC selalu ditempatkan pada daerah intermediate

amplifier yang menerima informasi sebelum dikirimkan kembali.

Page 44: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

27

2.9 Sistem Komunikasi Serat Optik Menggunakan SDH

SDH(Synchronous Digital Hierarchy) merupakan suatu struktur transport

digital yang beroperasi dengan pengaturan yang tepat terhadap payload dan

mengirimnya melalui jaringan transmisi sinkron. Sebelum SDH, hirarki digital

yang paling umum digunakan adalah Plesiochronous Digital Hierarchy (PDH), di

dunia ada tiga macam versi PDH yaitu versi Amerika, Eropa dan Jepang, ketiga

versi tersebut tidak kompatibel satu dengan yang lainnya, sehingga untuk

mengatasi hal tersebut maka munculah teknologi sinkron yang baru yaitu SDH.

Selain itu keterbatasan PDH untuk menyediakan kanal yang besar turut pula

melatar belakangi munculnya teknologi SDH yang mampu mengirimkan sinyal

informasi dengan kecepatan dan fleksibilitas yang cukup tinggi.Selain itu SDH

memiliki struktur yang lebih sederhana dari pada PDH. Dalam SDH, tributary

Amerika Utara dan Eropa hanya melalui satu tahapan pemultipleksan, sedangkan

dalam PDH pemultipleksan asinkron digunakan saat suatu tributary dimultipleks

ke dalam suatu tributary yang laju bitnya lebih tinggi.

Konfigurasi jarigan dengan topologi Ring memungkinkan dilakukan

pengembanan jaringan tanpa harus merubah secara keseluruhan jaringan

melainkan hanya menambah ukuran atau kapasitas perangkat SDH sesuai

kebutuhan. Keunggulan dari topologi Ring adalah memiliki kemampuan “self

healing ring” yaitu kemampuan untuk mendeteksi kerusakan yang terjadi pada

suatu jalur dan secara otomatis beralih menggunakan rute proteksi.

Mekanisme self healding protection pada trafik yang tidak dapat

diterapkan dengan memasang duplikasi circuit baord. Sedangkan untuk daerah

trafik yang padat agar dapat mendapatkan keamananan yang baik, pada kabel

digunkan sistem proteksi dengan rute yang berlawanan tau smama dengan rute

ring utama. Mekanisme self healing protection terdiri dari dua kategori, yaitu :

1. Unidirectional ring ( Ring satu Arah )

Pada tipe jalur ini, jalur trafik arah pemgiriman sinyal dengan arah

Page 45: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

28

penerimaan sinyal dilakukan pada arah yang sama pada fiber yang aktif. Fiber

proteksi bisa digunakan untuk duplikasi trafik atau untuk mengangkut trafik

prioritas rendah. Uniderectional Ring biasanya digunakan pada jaringan dengan

trafik yang berpusat pada satu node. Diagram sistem dengan unidirectional ring

dapat terlihat pada gambar 2.9.

Gambar 2.9 Unidirectional Ring[2]

Struktur ini menggunakan perankat Add/Drop Multiplexer dan

mempertimbangkan hal-hal berikut :

Untuk memenuhi kebutuhan proteksi dari demand yang ada

Sinyal/ demand ditransmisikan sepanjang ring dalam arah yang sama

Sinyal proteksi ditransmisikan pada kabel fiber optik yang ditunjukkan untuk

proteksi dalam arah berlawanan

2. Bidirectional Ring (ring dua arah )

Pada tipe ini arah sinyal untuk pengiriman dan penerimaan dilakukan

kedua fiber dengan arah ring yang berbeda/ berlawanan. Akibatnya, setengah dri

bandwith yang tersedia harus dicadangkan untuk sistem proteksi, yang

dimanfaatkan apabila terjad kerusakan. Bidirectional Ring cocok digunakan pada

jaingan dengan kondidi trafik yang seimbang anatara terminal-terminalnya.

Konfigurasi ring bidirectional ring dapat dilihat pada gambar berikut ini :

Page 46: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

29

Gambar 2.10 Bidirectional Ring[2]

2.10 Teknik Penyambungan Serat Optik

Dalam Sistem Komunikasi Serat Optik teknik penyambungan Kabel Optik

terdiri dari 2 cara yaitu dengan Metode Penyambungan Fusi (Fusion Splicing) dan

Metode Penyambungan Manual (Mechanical Splicing).

2.10.1 Metode Penyambungan Fusi (Fusion splicing)

Teknik Penyambungan Serat Optik Dengan Metode Penyambungan Fusi

(Fusion splicing) adalah penyambungan serat optik yang dilakukan dengan cara

melakukan pemanasan pada ujung sambungan dan menggunakan lelehannya

sebagai perekatnya sehingga terbentuk suatu sambungan koninu. Teknik

Penyambungan Serat Optik Dengan Metode Penyambungan Fusi (Fusion

splicing) merupakan suatu teknik penyambungan serat optik untuk menyambung

dua fiber secara permanen dan rugi-rugi penyambungan yang didapat pun kecil

karena penyambungan menggunakan suatu alat yaitu fusion splicer. Proses ini

jauh lebih baik bila dibandingkan dengan menggunakan konektor maupun teknik

mekanik, karena redaman yang dihasilkan bisa sampai 0 dB. Sedangkan bila

menggunakan konektor masih menimbulkan redaman meskipun proses

penyambungannya dilakukan dengan baik. Sedangkan penyambungan teknik

mekanik sifat nya hanya semi permanen dan besar redaman yang dihasilkan

bersifat sedang.

Page 47: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

30

2.10.2 Penyambungan Mechanic (Mechanical splicing)

Teknik Penyambungan Serat Optik dengan metode penyambungan

Mechanic (Mechanical splicing) adalah metode penyambungan yang tidak secara

permanen bergabung, hanya agar cahaya yang melewati serat optic yang putus

bisa berjalann dengan baik.Serat optic digunakan untuk mengirimkan data dalam

bidang Telekomunikasi dan jaringan computer.

Mechanical Splicingcara yang cepat dan efektif dalam penyambungan

serat optic sehingga informasi dapat lewat tanpa gangguan antara satu serat optic

dan serat optic lainnya. Ini adalah allternatif dari fusion splicing, fusion splicing

ini sangat rumit dan membutuhkan orang – orang yang terampil beda dengan

mechanical splicing sangat mudah dan orang awam langsung bisa menggunakan

mechanical splicing.

Penyambungan ini dilakukan karena beberapa sebab diantaranya karena

kabel serat optic mengalami kerusakan seperti karena tercangkul (kabel bawah

tanah), terkena tali layangan dan petir (kabel udara) atau terkena jangkar (kabel

bawah laut) dan alasan–alasan lainnya sehingga membutuhkan penyambungan

kabel serat optik(splicing).

2.11 Link Power Budget

Pertimbangan lain yang paling penting untuk sistem transmisi optik adalah

link power budget. Dengan mengurangkan seluruh redaman optik sistem daya

yangdikirimkan oleh transmitter, perencanaan sistem serat optik memastikan

bahwa sistem mempunyai daya yang cukup untuk mengemudikan receiver

pada level yang diinginkan. Link point- to point dan parameternya dapat dilihat

padaGambar 2.11.

Gambar 2.11 Link Point To Point dan Parameter-Parameternya [4]

Terlihat pada gambar 2.11 adalah penggambaran link budget point to point

anatara sumber optik di bagian pengirim (transmitter) dengan Detektor optik di

Page 48: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

31

bagian penerima (receiver). Diantara link pengirim dan penerima terdapat

konektor ujung di masing-masing sebelum perangkat penerima dan pengirim

optik. Kemudian terbentang panjang kabel yang disebut jarak transmisi yang

memiliki sambungan optik tiap titiknya. Pada link power budget, diantara

konektor, splice, dan jarak kabel optik dapat memepengaruhi besarnya daya

penerima pada detektor optik di bagian penerima (receiver).

Perhitungan Teoritis berdasarkan Standar

Berdasarkan rumus dalam analisis penuruna daya, ada 2 rumus untuk

menganalisis penurunan daya pada penerima yaitu pertama menghitung terlebih

dahulu total darilosskabel(fiber), losskonektor dan losssplice-nya. Kemudian

menghitung daya penerimaan(receiver) berdasarkan daya pengirim(transmitter),

total loss dan margin yang digunakan untuk mengkompensasi nilairedaman pada

kabel serat optic[5].

Perhitungan Redaman

f (dB) = PanjangKabel(Km ) x LossKabel (dB)

c (dB) = JumlahKonektor x Loss konektor(dB)

s(dB) = Jarak Kabel x Loss Sambungan (dB)

Loss/km= f/L (dB)

loss = (f + c +s).....................................................................................(2.1)

Perhitungan Link Power Budget

PRx = P tx – ( loss + Margin).........................................................................(2.2)

Dimana :

PS = Loss daya Total (∑total) yang diperbolehkan pada sistem.

P (Rx) = Daya pada Receiver(dBm)

P (Tx) = Daya Transmitter pada perangkat(dBm)

loss =Jumlah loss yang terjadi di sepanjang kabel serat optik(dB)

Margin = nilai yang digunakan untuk mengkompensasi redaman yang terjadi

pada kabel serat optik (dB)

Page 49: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

32

BAB III

KONFIGURASI JARINGAN SERAT OPTIK ARNET

JATINEGARA

3.1 Kofigurasi Jaringan

Kondisi jaringan kabel serat optik PT Telkom Arnet Jatinegara memiliki

sentral pusat yang merupakan sentral utama yang merupakan sentral utama yaitu

STO Jatinegara dan mempunyai 12 lokasi sentral lokal yang anatar lain berlokasi

di Gambir1(GBR1), Gambir 2(GBR2), Semanggi (SMG2), Kebayoran (KBB),

Cawang(CW),Kalibata (KAL), Rawamangun (RMG), Klender (KLD),

Buaran(PDK), Pasar Rebo(PSR), Tebet (TB), Cempaka Putih (CPP).Konsep

jaringan sistem komunikasi serat optik ring SDH PT Telkom dapat ditunjukkan

pada gambar di bawah ini :

Gambar 3.1 Konfigurasi Sistem Komunikasi Serat Optik Arnet Jatinegara

Page 50: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

33

Pada gambar 3.1, terlihat bahwa konsep jaringan sistem komunikasi serat

optik pada PT Telkom Arnet Jatinegara adalah konsep jaringan ring SDH. Untuk

perangkat SDH yang digunkan pada STO Arnet Jatinegara saat ini menggunakan

STM 4 hingga STM 16 yang. Setiap STM memiliki besar kecepatan optical

output yang berbeda- beda. Untuk STM 1 memliki kecepatan optical outputnya

sebesar 51,84 Mbit/s. Untuk STM 4 memiliki optical outputnya 4 kali dari

kecepatan STM 1 yaitu sebesar 622,28Mbit/s. Sedangkan STM yang digunakan

pada link STO Jatinegara- STO Kebayoran, STO Jatinegara- STO Semanggi dan

Jatinegara- STO Gambir1 menggunakan STM 16 dengan kecepatan optical

output-nya 16 kali dari kecepatan STM 1 yaitu sebesar 2,488 Mbit/s .

Pada konfigurasi Arnet Jatinegara yang ditunjukkan pada gambar 3.1

dapat dijelaskan bahwa perangkat jaringan yang ada pada PT Telkom Jatinegara

memiliki jumlah kabel optik untuk menghubungkan antar STO terdiri antara 36

core sampai 72 core. Untuk masing- masing link antara STO Jatinegara dengan

STO Kebayoran memiliki jumlah kabel optik sebanya 72 core. Kemudian untuk

link antara STO Jatinegara Semanggi memiliki jumlah kabel optik sebanyal 36

core. Dan selanjutnya untuk link antara STO Jatinegara dengan STO Gambir 1

memiliki jumlah kabel optik sebnayak 36 core.

Untuk kabel fiber optic untuk unit distribusi pada PT Telkom Arnet

Jatinegara menggunakan jenis kabel singlemode yang terdiri dari 2 tipe kabel

yaitu tipe G655 dan G652.Karakteristik dari masing tipe kabel G 655 dan G652

dapat dilihat pada lampiran II. Kemudian Sentral tandem pada STO Jatinegara

digunakan untuk penghubung anatara sentral- sentral lokal yang terdapat pada

STO tersebut. Besar kapasitas jumlah tributary untuk jalur masing- masing STO

sebesar 2,5 Gbps (E1). Selanjutnya pada jaringan komunikasi optik tingkatan

sinyal SDH yang digunakan pada PT Telkom Arnet jatinegara masing- masing

yang digunakan adalah STM 16.

Page 51: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

34

3.2 Konfigurasi Jaringan di 4 STO

Untuk selajutnya konfigurasi jaringan yang akan di bahas pada tugas

akhir ini adalah konfigurasi jaringan yang terlihat pada tabel 3.1, pada tabel 3.1

merupakan jaringan komunikasi serat optik ring SDH yaitu STO Jatinegara antara

STO Kebayoran, STO Semanggi dan STO Gambir merupakan bagian dari STO

yang berada di wilayah Kandatel PT Telkom Arnet Jatinegara.

Pada lampiran 1 keempat STO ini termasuk pada ring 1 dan menggunakan

jenis perangkat sinyalnya menggunakan SDH Fujitsu pada ketiga STO yaitu

STO Jatinegara, STO Kebayoran, STO Semanggi dan STO Gambir dengan

tingkatan sinyal yang digunakan yaitu STM 16.

Tabel 3.1 Konfigurasi Level Sinyal di 4 STO

Node Level sinyal

STO Jatinegara STM 16

STO Kebayoran STM 16

STO Semanggi STM 16

STO Gambir STM 16

Sistem transmisi SKSO di PT Telkom Arnet Jatinegara sering mengalami

gangguan terhadap redaman kinerja SKSO nya, diantaranya gangguan kinerja

transmisi antar STO dari sistem komunikasi serat optik akibat dari redaman yang

terjadi di sepanjang kabel serat optik.

Berdasarkan nilai daya output yang diterima di receiver terhadap redaman

di sepanjang serat optik mengakibatkan kinerjanya di bawah standar, hal ini

disebabkan karena beberapa redaman yang terjadi di kabel serat optik dan splice

yang terlalu besar sehingga mengakibatkan berkurangnya daya dari pemancar

optik (Transmitter) hingga sampai ke penerima optik (Receiver). Dari masalah

yang ada dilihat dari konfigurasi jaringan pada ke tiga Link yaitu STO Jatinegara-

Kebayoran, STO Jatinegara Semanggi dan STO Gambir1 maka yang akan di

bahas pada bab IV akan menfokuskan analisis terhadap gangguan kinerja

transmisi antara STO yang bisa terjadi akibat redaman ynag terjadi di sepanjang

kabel optik.

Page 52: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

35

3.3 Data Jaringan

Dari data hasil pengukuran keseluruhan jaringan komunikasi serat optik

PT Telkom Arnet Jatinegara antara ruas STO Jatinegara, STO Kebayoran, STO

Semanggi, dan STO Gambir1 pada bulan Desemeber 2014 ternyata terdapat hasil

pengukuran redaman optik yang tidak memenuhi standar di PT Telkom sehingga

menggangu kinerja dari sistem transmisi di sepanjang kabel optik di ketiga link

tersebut.

Konfigurasi yang digunakan pada ketiga Link tersebut menggunakan

teknik pemasangan optik yaitu function splicing. Ternyata dari hasil pengukuran

alat ukur OTDR dilihat bahwa terjadi masalah redaman yang diakibatkan dari

pemasangan optik tersebut yang menyebabakan redaman splicing (sambungan)

yang tidak memenuhi standard PT Telkom Arnet Jatinegara. Permasalahan

gangguan kinerja dari sistem transmisi di sepanjang kabel optik dari ketiga link

tersebut akan di bahas di bab IV. Pada konfigurasi di 4 STO tersebut jalur

Jatinegara- Kebayoran yang memiliki jumlah kabel sebanyak 72 coredengan

jarak panjang kabel optik sebesar 14,5 Km berbeda dengan jalur Jatinegara-

Semanggi yang memiliki jumlah kabel sebanyak 36 core dengan jarak kabel optik

sepanjang 12,8 Km dan jalur Jatinegara- Gambir1 yang memiliki jumlah kabel

sebanyak 36 core dengan jarak kabel optik sepanjang 10,5 Km . Pada ke 4 STO

tersebut masing- masing memiliki jumlah splice yang berbeda dan loss splice

yang berbeda serta panjang kabel optik yang berbeda yang di bahas pada bab IV

dan terdapat pada hasil pengukuran pada lampiran IV.

Tabel 3.2 Data Konfigurasi 3 STO

Ruas Jarak Jumlah Core Tipe Kabel

Jatinegara-

Kebayoran

14,5 Km 76 core G 655

Jatinegara-

Semanggi

12,8 Km 36 core G 652

Jatinegara- Gambir 10,5 Km 36 core G 652

Page 53: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

36

3.4 Perangkat Jaringan Komunikasi Serat Optik

Secara umum perangkat untuk konfigurasi Komunikasi Serat Optik yang

digunakan pada PT Telkom Arnet Jatinegara terdiri dari elemen akses yaitu

OLT(Optical Line Terminal), OTB(Optical Termination Box), ODC (Optical

Distribution Cabinet), ODP (Optical Distibution Point) dan ONT( Optical

Network Terminal ). Elemen-elemen perangkat jaringan tersebut memilki peran

sangat penting untuk mendukung sistem komunikasi telekomunikasi pada serat

optik. Pada gambar 3.2 merupakan tampilan konfigurasi perangkat jaringan

Komunikasi Serat Optik yang sangat penting dan secara garis besar.

Gambar 3.2 Perangkat Konfigurasi Sistem Komunikasi Serat Optik

Dari gambar 3.2 dapat di jelaskan masing- masing dari elemen- elemen

perangkat jaringan pada distribusi sistem komunikasi serat optik sebagai berikut :

OLT

Optical Line Terminal (OLT) adalah perangkat yang berfungsi sebagai

titik akhir (end-point) dari layanan jaringan optik pasif. Perangkat ini mempunyai

dua fungsi utama, antara lain yaitu melakukan konversi antara sinyal listrik yang

digunakan oleh penyedia layanan dan sinyal optik yang digunakan oleh jaringan

Page 54: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

37

optik pasif dan mengkoordinasikan multiplexing pada perangkat lain di ujung

jaringan, atau biasa disebut dengan Optical Network Terminal (ONT) atau Optical

Network Unit (ONU).

Gambar 3.3 Perangkat Optical Line Terminal(OLT)

OTB

OTB (Optical Termination Box) yang merupakan kotak penyimpan

sambungan atau splice optik yang disambungkan ke serat optik yang terhubung ke

konektor. OTB terbagi menjadi dua sisi :

1. Ssi atas, unruk sambungan kabel feeder

2. Sisi bawah, untuk sambungan kabel menuju pelanggan

Gambar 3.4 Perangkat Optical Termination Box (OTB)

Page 55: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

38

ODC

Optical Distribution Cabinet (ODC) , merupakan perangkat pasif yang

diletakkan di lokasi jaringan akses Komunikasi Serat Optik yang berfungsi

sebagai titik terminasi anatara kabel Feeder dari STO dan kabel distribusi menuju

ODP. Untuk penyambungan circuit TeNoss pada port panel ODC kaebl Feeder

dari jaringan berada di posisi belakang dan kabel Distribusi ODP berada di posisi

belakang. Berikut gambar 3.5 yang merupakan frame mapping dari perangkat

ODC

Gambar 3.5 Perangkat Optical Distibution Cabinet (ODC)

ODP

Optical Distibution Point (ODP) merupakan perangkat pasif yang

diletakkan di tiang lokasi jaringan komunikasi serat optik, pada dinding bangunan

customer atau pada Node-B yang berfungsi sebagai titik terminasi kabel Distribusi

dar ODC/ kabel FCL dari STO sebagai kabel IN, sedangkan kabel OUT-nya

menggunakan kabel drop menuju OTP (Customer). Untuk penyambungan circuit

TeNoss pada port panel ODP kabel distibusi dari jaringan berada di posisi

belakang dan kabel drop dari/ menuju OTP berada di posisi depan

Page 56: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

39

Gambar 3.6 Perangkat Optical Distibution Point (ODP)

Perangkat SDH (Synchoronous Digital Hierarchy)

Kemudian untuk perangkat sinyal yang digunakan di PT Telkom adalah

perangkat SDH. Perangkat SDH yang digunaka pada PT Telkom Arnet Jatinrgara

menggunakan SDH Fujitsu. SDH Fujitsu merupakan alat produksi transmisi yang

dioperasikan untuk meyalurkan traffik pada sistem komunikasi seperti voice,data

dan video.

Jenis- jenis perangkat multipleks pada SDH Fujitsu yang Umumnya

digunakan di PT Telkom ada beberapa jenis seri FLX yaitu :

1. FLX 150T :STM 1 outputnya = optik/ coaxial

2. FLX 600 :STM 4 outuputnya = optik

3. FLX 150/600 :STM -1 atau STM -4 outputnya =optik

4. FLX 2500A : STM-16 dan STM -64 outputnya = optik

Untuk menganalisa link budget pada PT Telkom Arnet Jatinegara di Ring1

ini, perangkat SDH yang digunakan perangkat Fujitsu seri FLX 2500 A.

Perangkat seri ini memiliki kecepatan teminasi kecepatan transmisi 2,5 Gbps pada

STM 16. Kelebihan perangkat seri ini memiliki sistem proteksi MS-SPRing

(Multiplex Section- Shared Protection Ring) yaitu setiap saluran transmisi akan

diproteksi dengan satu saluran lain yang berlawanan. Artinya dalam saluran

transmisi memiliki saluran bolak balik yang berbeda.

Page 57: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

40

3.5 Metode Pengukuran

Untuk mendapatkan hasil data pengukuran, pegukuran ini menggunakan

OTDR (pengukuran secara manual) dengan menganalisis hasil pengukuran

dilakukan secara otomatis berdasarkan pembacaan sistem terbut agar dapat

menghasilkan kinerja jaringan yang berkualitas tinggi. Pada konfigurasi ini

perangkat OTDR yang digunakan adalah OTDR Yokogawa tipe AQ 7260 yang

dapat dilihat pada lampiran III.

Rugi- rugi daya yang terjadi di dalam serat optik dapat dievalusi pada

domain waktu dengan menggunakan OTDR. Dengan OTDR akan didapatkan

kualitas kabel, seberapa besar loss cahaya kabel dan panjang kabel totalnya.

OTDR ini digunakan pula pada saat terjadi gangguan, sehingga bisa mengetahui

titik mana kabel yang bermasalah yang harus diperbaiki dan disambung kembali.

OTDR dapat menganalisa setiap jarak dari insertion loss, reflection loss

dan coupling loss yang muncul pada setiap titik, serta menampilkan informasi

layar tampilan. Mekanisme kerja OTDR diawali dengan memasukkan sinyal-

sinyal cahaya ke dalam serat optik sebagian sinyal dipantulkan kembali dan

diterimaoleh penerima. Selajutnya sinyal balik yang diterima akan dinyatakan loss

dan waktu tempuh sinyal tersebut untuk menghitung jarak.

OTDR (Optical Time Domain Reflectonemer) merupakan salah satu

perangkat yang digunakan dalam uji akhir kabel serat optik. OTDR

memungkinkan sebuah link yang dikur dari satu ujung. OTDR dipakai untuk

mendapatkan gambaran visual dari pengukuran redaman serat optik. Link

transmisi serat optik yang ditampilkan pada sebuah layar dengan jarak sebenarnya

yang digambarkan pada sumbu X dan dan redaman pada sumbu Y. Perangkat

ini digunakan dalam pengujian performasi kabel serat optik.

3.5.1 Fungsi OTDR

Fungsi dari penggunaan OTDR yaitu: Untuk menentukan jaraksambungan,

mengetahui lokasi titik penyambungan dan berapa besar loss-

nya, untukmenganalisis setiap kejadian-kejadian sepanjang serat yang

Page 58: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

41

diukur(patahan atau redaman), mengukur besar loss kabel rata-rata (dB/Km), saat

instalasi penggunaan OTDR untuk memastikan loss sambungan, konektor dan

loss karena tekukan atau tekanan terhadap kabel, dan dalam pemeliharaan OTDR

digunkan untuk pengecekan periodik untuk memastikan tidak ada kelalaian pada

serat.

Dilapangan fungsi OTDR yang sangat vital yaitu untuk mengukur panjang

kabel optik sehingga diketahui jarak dari lokasi/titik kabel optik yang putus relatif

terhadap perangkat optik yang terinstal. Contohnya begini : misalkan sebelum

putus suatu span kabel optik adalah 30 km. Setelah dilakukan pengukuran kembali

didapat pembacaan OTDR yang menghasilkan nilai 17 km. Maka dapat

disimpulkan bahwa telah terjadi event putus kabel (fiber cut) pada jarak 17 km,

relatif terhadap posisi pengukuran sekarang. Mengenai arah mata angin titik putus

kabel, engineer masih harus mengkomparasinya dengan peta jaringan optik

(network map). Kalau tidak punya peta jaringan maka kita tidak akan tahu 17 km

itu arah mana dari titik pengukuran, apakah ke arah utara, barat, timur dan selatan.

3.5.2 Prinsip Kerja OTDR

Prinsip Kerja OTDR antara lain yaitu : Memancarkan pulsa-pulsa cahaya

dari sebuah sumber dioda laser kedalam sebuah serat optik, sebagian sinyal-sinyal

dibalikan ke OTDR, sinyal diarahkan melalui sebuah coupler ke Detektor Optik

dimana sinyal tersebut diubah menjadi sinyal listrik dan ditampilkan pada layar

CRT, OTDR mengukur sinyal balik terhadap waktu, waktu tempuh dikalikan

dengan kecepatan cahaya, tampilan OTDR menggambarkan daya relatif dari

sinyal balik terhadap jarak dan dibagi 2 karena sinyal membutuhkan waktu itu

untuk pulang dan pergi.

Parameter –parameter yang dapat diukur pada OTDR yaitu anatara lain :

Pertama adalah Jarak, dalam hal ini titik lokasi dalam suatu link, ujung link atau

patahan. Kedua adalah loss, loss untuk masing-masing splice atau total loss dari

ujung ke ujung dalam suatu link. Ketiga adalah Atenuasi, atenuasi dari serat

dalam suatu link. Dan yang terakhir adalah Refleks, OTDR dapat mengetahui

besar refleksi (return loss) dari suatu event.

Page 59: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

42

3.5.3 HalYang Perlu Diperhatikan DalamPenggunaan OTDR

Hal hal yang perlu diperhatikan dalam penggunaan OTDR adalah sebagai

berikut:

1. Jangan melihat laser secara langsung karena berbahaya bagi

mata

2. Konektor vyang akan dimasukan ke terminal di OTDR harus

bersih agar didapatkan hasil yang akurat

3. Gunakan tegangan catuan yang diijinkan oleh alat tersebut(110V/

220 V)

4. Penanganan kabel konektor harus sesuai dengan standar,

biasanya menggunakan pig tail konektor sesuai standar

5. Kondisi lingkungan alat harus bersih, kering, tidak terkena

sinar matahari

6. Harus mensetting alat agar dapat bekerja sesuai dengan tujuan

serta mempertimbangkan spesifikasi alat sehingga tidak terlalu

membebani alat ukur.

3.5.4 Langkah- langkah Menggunakan OTDR

Pertama yang dilakukan adalah menyalakan alat ukur yang digunakan.

Penting dalam pengukuran menggunakan alat ukur sesuai dengan beban yang

akan digunakan. Di PT TELKOM Indonesia Divisi Area Network Jatinegara

menggunakan Alat ukur Optical TimeDomain Reflectometer (OTDR) Yokogawa

tipe AQ 7260.

Kemudian kedua, membersihkan Pig Tail yang terdapat pada OTB yang

akan diukur sebab debu yang menempel pada pi tail akan mengganggu laser yang

akan ditembakan untuk mengukur jaringan serat optik yang ada.

Ketiga, menghubungkan pig tail OTB yang akan diukur untuk setiap Core

yang akan dihitung. Pengukuran dilakukan satu persatu tipa core yang ada pada

jaringan OTB yang akan diukur tersebut. Pigtail dihubungkan pada adaptoryang

terdapat pada OTDR seperti gambar 3.7.

Page 60: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

43

Gambar 3.7 Adaptor OTDR menyambung dengan serat optik

Mensetting alat yaitu menentukan besaran besaran yang akan digunakan

pada saat pengukuran. Setting yang diperlukan adalah mensetting jarak ( range),

panjang gelombang (wave length), dan indeks bias ( IOR).

a.) Mensetting Jarak

Penetuan jarak diperlikn krena pada saat pengukuran jaringan serat optik

yang sangat panjang harus diketahui berapa jarak antara OTB yang asal atau OTB

yang diukur dengan OTB ujuan. Bila jarak yang di setting terlalu pendek dari

jarak jaringa serat yang akan di ukur maka tidak akan bekerja atau eror everaging.

b.) Indeks Bias (IOR)

Penentuan indeks diperlukan karena pada saat pengukuran jaringan serat

optik yang sangat panjang harus menggunakan indeks bias laser yang tinggi, harus

sesuai denga karakteristik dari indeks bias dari kabel fiber optik yang akan diukur,

biasanya tertera pada mantel kabel yang akan diukur.

c) Panjang Geobang (Wave Length)

Dalam pengukuran rugi-rugi serat ptik panjang gelombang yang ada

padaalat ukur menggunakan besaran nano detik (ns) sehingga frekuensi yang

dipancarkan sangat tinggi. Semakin tinggi, semakin panjang gelombang yang

digunakan maka semakin kurang akurat hasil pengukuran, namun hasil

pengukuran akan menjadi lebih cepat bila menggunakan panjang gelombang yang

besar. Tinggal disesuaikan pada panjang kabel yang akan diukur. Minimum

panjang yang diukur adalah 500 meter dan maksimum adalah 20 Km.

Page 61: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

44

Selanjutnya untuk urutan Urutan Operasi Pengukuran Rugi Rugi pada

serat optic adalah menekan[PREVIEW], mengubah rentang jarak [Distance

Range], menekan [START/STOP] memulai proses averaging, melakukan

pengukuran loss antara dua titik dan melakukan pengukuran loss antara dua

sambungan.

3.5.5 Hasil Pengukuran Menggunakan OTDR

Setelah prosedur prosedur dipenuhi dan dilakukan pengukuran, maka akan

didapatkan hasil pengukuran menggunakan OTDR sebagai berikut:

1. Hasil pengukuran OTDR yang bagus

Gambar 3.8 Hasil pengukuran OTDR jaringan kabel optik bagus

Pada gambar 3.8 terlihat contoh hasil pengukuran OTDR pada link STO

Jatinegara- Kebayoran pada nomor core 6. Pada link tersebut dari hasil

pengukuran terlihat jaringan pada kabel optik dinilai bagus bila pada saat

penggukuran menunjukkan bahwa tiap titik splice yang digambarkan dengan

simbol segitiga tidak menunjukkan penurunan drastis dan pada akhir fiber optik

terlihat penghamburan pada ujung terlihat bagus ditunjukan pada grafik yang naik

secara drastis lalu putus dengan garis merah yang naik turun. Yang artinya End of

Fiber optic pada gambar 3.8 adalah bagus. Untuk melihat hasil dari pengamatan

dari hasil pengukuran alat ukur OTDR dapat dilihat pada lampiran IV pada tabel1

Page 62: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

45

dan 4 untuk link STO Jatinegara- STO Kebayoran, pada lampiran IV pada tabel 2

dan 5 untuk STO Jatinegara- STO Semanggi, dan pada lampiran IV tabel 3 dan 6

untuk link STO Jatinegara- STO Gambir 1. Kemudian untuk contoh beberapa

hasil tampilan pengukuran OTDR yang dapat dilihat padalampiran IV.

2. Hasil pengukuran OTDR yang tidak bagus

Gambar 3.9 Hasil pengukuran OTDR jaringan kabel optik tidak bagus

Dari gambar 3.9 terlihat contoh hasil pengukuran pada link STO

Jatinegara- Kebayoran pada nomor core 22. Pada link tersebut terlihat jaringan

pada kabel optik dinilai terdapat banyak event atau kejadian yang di tunjukan

oleh naik dan turunnya nilai pada grafik secara drastis yang ditunjukan pada event

event tersebut terjadi lossyang bisa terjadi akibat penyambungan (splice) atau

kabel optik yang tidak baik. Terlihat pada gambar splice nomor 2,3 dan 5 yang

terbaca pada alat ukur OTDR mengalami penurunan. Pada tugas ini di antara ke

tiga link yaitu STO Jatinegara- STO Kebayoran, STO Jatinegara- STO Semanggi,

dan STO Jatinegara- STO Gambir 1 ada beberapa core nya mengalami hal yang

sama pada gambar 3.9, maka oleh karena itu akan dilakukan analisa yang dibahas

pada bab IV.

Page 63: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

46

Gambar 3.10 Macam macam loss yang ditunjukan pada grafik OTDR

Pada gambar diatas terlihat ada dua jenis loss, yaituReflective Loss dan

Non reflective loss. Reflective lossdisebabkan oleh penyambungan yang tidak

baik sehinggaterjadi seolah olah penguatan yang disebabkan perbedaandiameter

inti Core yang disambung, biasa terjadi padapenyambungan inti kabel

optikmenggunakan metode selainFusion Splicer.

Sedangkan pada non reflective loss menunjukanpenyambungan yang

baik secara teori inti core yangdisambung sama walaupun pada praktiknya inti

core tidakmungkin sama, namun non reflective loss sering terjadi

bilapenyambunganmenggunakan metode Fusion Splicerdengan baik sehingga

efek inti core yang tidak sama dapatdiminimalisir dengan drastis.

3.6 Komponen Jaringan Komunikasi Optik

Dalam transmisi jaringan komunkasi Optik ada beberapa komponen yang

sangat berpengaruh dalam transmisi dalam jaringan komunikasi ini. Komponen

ini merupakan komponen yang saling berpengaruh satu sama lain, karena bila

salah satu ada yang rusak atau terjadi redaman yang tidak sesaui standar, maka

kan menimbulkan gangguan pada sistem komunkasi tersebut. Komponen tersebut

adalah Kabel Optik, Splice, dan Konektor .

Page 64: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

47

3.6.1 Kabel Optik

Menurut rekomendasi standar Fiber Optic Association EIA/TIA 568yang

dapat dilihat selengkapanya pada lampiran III, redaman pada kabel serat optik

dibedakan berdasarkan jenis kabel Singlemode yang dibedakan menjadi 2 tipe

yaitu untuk kabel tipe G 655 loss kabel yang diperbolehkan adalah sebesar 0,22

dB/Km. Kemudian untuk tipe kabel G 652 losss kabel yang diperbolehkan adalah

0,21 dB/Km. Tapi besarnya nilai ini bukan merupakan nilai yang mutlak, karena

harus memepertimbangkan proses dari pabrik, desain dan komposisi kabel.

Pada pengukuran redaman kabel pada kasus ini, menggunakan kebel jenis

Singlemode yang dibedakan menjadi dua jenis tipe kabel yaitu G 655 Dan G 652.

Hal yang memebedakan jenis tipe kabel ini adalah pada pengaruh redaman dan

dispersi yang terjadi, jika jenis kabel G652 redaman kabel yang terjadi kecil,

sedangkan nilai dispersi besar, juga diameter core G 652 lebih kecil.

3.6.2 Splice

Menurut rekomendasi standar Fiber Optic Association EIA/TIA 568yang

dapat dilihat selengkapnya pada lampiran III, kabel serat optik untuk

penyambungan baik dengan teknik fusion atau mechanical harus mempunyai nilai

redaman splice tidak lebih dari 0,3 dB/Km. Redaman pada splice dapat terjadi

akibat saat insatalasi di lapangan. Teknik penyambungan kabel (splicing)

mengunakan teknik fusion splicing. Fusion splicing merupakan suatu teknik

penyambungan serat optik untuk menyambung dua fiber secara permanen dan

rugi-rugi penyambungan yang didapat pun kecil karena penyambungan

menggunakan suatu alat yaitu fusion splicer. Proses ini jauh lebih baik bila

dibandingkan dengan menggunakan konektor maupun teknik mekanik, karena

redaman yang dihasilkan bisa sampai 0 dB. Namun, bila menggunakan konektor

masih menimbulkan redaman meskipun proses penyambungannya dilakukan

dengan baik. Untuk mengetahui alat penyambung kabel menggunakan Fitel tipe

S178 A yang dapat dapat dilihat pada lampiran III.

Page 65: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

48

3.6.3 Konektor

Menurut rekomendasi Fiber Optic Association EIA/TIA 568 yang dapat

dilihat pada lamipran III, konektor yang untuk menghungkan perangkat

transmitter dengan receiver untuk jenis kabel singlemode harus mempunyai nilai

redaman konektor tidak lebih dari 0,5 dB/Km. Konektor yang diguankan pada PT

Telkom Arnet Jatinegara adalah merk 3M TM

dengantipe FC. Untuk melihat

spesifikasi lengkap dari konnektor yang digunakan dapat dilihat pada lampiran III.

Tapi besarnya nilai redaman ini bukan merupakan nilai yang mutlak, karena harus

memepertimbangkan proses dari pabrik, desain dan komposisi konektor itu

sendiri.

Page 66: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

49

BAB IV

ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI

ARNET JATINEGARA

4.1 ARNET Jatinegara Ring 1 di 3 STO

ARNET (Area Network) Jatinegara merupakan unit organisasi yang

melaksanakan penyelenggaraan fungsi operasi network (selain jaringan akses)

infrastruktur telekomunikasi PT.Telkom Indonesia yang berada di cakupan area

Jatingara. ARNET Jatinegara dibentuk berdasarkan Organisasi Divisi

Infrastruktur, dimana dipimpin oleh Manager Area, dimana MANAR bertanggung

jawab atas efektifitas penyelenggaraan pengelolaan fungsi operasi dan

pemeliharaan network pada lingkup operasi layanan network di wilayah cakupan

area Jatinegara. Sehingga dapat dipastikan bahwa dukungan kesiapan operasi dan

kualitas network untuk penyelenggaraan layanan jasa infocom di wilayah area

network Jatinegara dapat berfungsi secara memadai. Pada Arnet Jatinegara

terdapat 7 Ring yang dapat dilihat keseluruhannya pada lampiran I. Untuk

pembahasan skripsi pada bab ini, penulis akan membahas permasalahan yang

terjadi pada Arnet Jatinegara pada Ring 1. Permasalahan yang akan dibahas

adalah terjadi pada link STO Jatinegara- STO Kebayoran, STO Jatinegara –STO

Semanggi dan STO Jatinegara- STO Gambir 1. Hal ini perlu dilakukan analisis

karena terjadi penurunan daya penerimaan yang tidak memenuhi standar.

Padagambar 4.1 merupakan konfigurasi link yang merupakan pokok

pembahasan pada bab ini untuk proses identifikasi dan analisa penulis dalam

mengetahui kinerja serat optik Ring 1 Arnet Jatinegara. Untuk melihat

keseluruhan gambar Pada gambar tesebut menunjukkan hubungan antara STO

Jatinegara- Kebayoran, STO Jatiengara- Semanggi, dan STO Jatinegara-

Gambir1. Pada sistemnya STO Jatinegara terhubung dengan ketiga STO yang lain

menggunakan media transmisi kabel singlemode dimana 3 STO tersebut

diantaranya adalah STO Jatinegara – STO Kebayoran, STO Semanggi dan STO

Gambir1. Panjang fiber optik dari ke empat STO tersebut dapat dilihat pada tabel

3.1. Pada bab ini, penulis akan membahasketiga jalur antara STO Jatinegara-

Page 67: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

50

Kebayoran, STO Jatiengara- Semanggi, dan STO Jatinegara- Gambir1 yang

terdiri beberapa core yang mengalami redaman yang tidak sesuai dengan standar

PT Telkom sehingga menimbulkan gangguan kabel serat optiknya dapat

mempengaruhi penerunan daya pada perangkat penerimaan optik (receiver) dan

terjadi penurunan kinerja dari sistem komunikasi pada link tersebut.

Gambar 4.1 Konfigurasi Link STO Jatinegara antar STO Kebayoran, STO

Semanggi dan STO Gambir1

Terlihat pada gambar 4.1 link antar tiap STO terdiri dari beberapa titik

penyambungan (splice) pada jalur transmisi kabel optiknya. Jumlah splice berbeda

tiap jalur antar link STO nya. Pada jalur kabel serat optik tersebut terdapat

beberapa core yang mengalami kerusakan, sehingga untuk menjaga layanan agar

tetap berjalan baik perlu ditangani segera dan tepat. Pada hasil lapangan di 3 link

STO tersebut nilai hasil penurunan daya penerimaannya dapat dihitung sesuai

panjang kabel dan jumlah splice-nya.

4.2 Analisis Penentuan Gangguan

Pada pembahasan bab ini, untuk melakukan analisa dalam penentuan

gangguan pada link STO Jatiengara- STO Kebayoran terlebih dahulu melihat link

yang mengalami penurunan daya penerimaan dapat dilihat menggunakan sistem

NMS (Network Monitoring System)di PT Telkom Arnet Jatinegara. Hasil

pengukuran pada sistem NMS dapat dilihat pada lampiran IV.Kemudian

mengamati link pada masing- masing core-nya yang daya penerimaan dibawah

hasil perhitungan teoritis berdasarkan parameter standar.Selanjutnya melihat dari

loss fiber apakah ada loss fiber pada tiap core yang tidak sesuai dengan

Page 68: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

51

standar.Lalu mengamati tiap core yang memiliki beberapa titik spliceapakah dari

masing- masing titik splice pada tiap core terjadi loss yang tidak sesuai dengan

standar. Selanjutnya dilihat dari total loss dari total loss yang terjadi pada tiap

core apakah ada yang tidak sesaui dengan standar.

Untuk mengetahui kerusakan yang terjadi pada jalur transmisi pada link

tiap STO pada Arnet Jatinegara, dapat melihat hasil ukur dari pengukuran

OTDR.Hasil pengukuran OTDR menampilkan pengukuran seperti pelemahan

serat optik, loss splice, loss fiber dan lokasi dimana kabel terjadi kerusakan

dengan hasil pengukuran ini.Dari hasil pengkuran OTDR akan terlihat dimana

titik letak terjadinya kabel yang putus yang dapat dilihat contoh hasil pengukuran

OTDR pada lampiran IV. Pada gambar tersebut terlihat jalur antar titik

sambungan ada yang mengalami penurunan grafik yang artinya terjadi loss splice

yang bila smakin menurun maka bisa dikatakan akan semakin tinggi loss splice

yang terajadi pada jalur transmisi pada link tersebut.

Setelah melakukan pengukuran,proses selajutnya adalah mengindentifikasi

serta menganalisis dari hasil pengukuran OTDR. Dari hasil pengukuran tersebut

dapatdilakukan analisa dengan melihat kembali apakah pada core yang

mengalami loss melebihi perhitungan teoritis memangberpengaruh dengan daya

penerimaan yang diterima di receiver sertamengetahui penyebab gangguan

jaringan serat yang kemudian dapat dilakukan perbaikan serta titik lokasi dimana

penyebab gangguan itu terjadi.

4.2.1 Analisis Penentuan Gangguan LinkSTO Jatinegara- STO

Kebayoran

Pada link STO Jatinegara terdapat 7 splice dengan panjang kabel 14,5 Km

dengan dan core sebanyak 72 core. Untuk mengetahui bagaimana skema jalur

transmisi pada link tersebut dapat dilihat pada gambar 4.2.

Gambar 4.2 Skema Jalur Transmisi Kabel Optik pada link STO Jatinegara-

STO Kebayoran

Page 69: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

52

Pada gambar 4.2 terlihat jarak masing- masing titik sambungan(splice)

yang berbeda- beda. Data jarak titik sambungan(splice) pada jalur transmisi di

link tersebut berdasarkan pengukuran melalui alat ukur OTDR, contoh hasil

pengukuran dapat dilihat pada lampiran IV.Setiap core memiliki titik splice yang

sama, namun pada saat pengukuran di alat ukur OTDR, ada beberapa titik splice

tidak terbaca dan tidak akan tampil pada pengukuran bila loss splice yang terjadi

pada tiap titik sambungannya 0 dB. Pada gambar 4.2 terlihat pada titik splice yang

ke dua berjarak pada 2,9 Km dari STO Jatinegara . Kemudian pada titik splice

yang ke tiga terpadat pada 5,8 Km dari STO Jatinegara. Pada titik splice yang ke

empat terdapat pada 6,4 Km dari STO Jatinegara. Pada titik splice yang ke 5

berjarak pada 6,9 Km dari STO Jatinegara. Pada titik splice ke enam berjarak

pada 7,6 Km dari STO Jatinegara.Selanjutnya pada titik splice yang ke tujuh

berjarak pada 11,5 Km dari STO Jatinegara.

Melihat lampiran IV pada tabel 4 pada link STO Jatinegara- STO

Kebayoran terlihat adanya loss splice yang melebihi perhitungan teoritis

berdasarkan parameter standar terdapat pada core 15,22, 23, 26,

29,33,39,47,52,53,54 dan 63. Pada link tersebut perhitungan loss splice

berdasarkan rumus perhitungan link power budget pada bab II yang diinjinkan

adalah 2,1 dB. Namun ternyata berdasarkan hasil pengamatan pengukuran OTDR

yang dilihat dari tabel 4 pada lampiran IV, terlihat bahwa core-core tersebut

memiliki loss splice yang melebihi perhitungan teoritis berdasarkan parameter

standar.

Kemudian, dengan melihat dari hasil pengamatan loss splice yang

melebihi perhitungan teoritis, mengakibatkan daya penerimaan megalami

penurunan akibat loss splice yang melebihi perhitung teoritis. Dengan adanya

permasalahan tersebut maka perlu dilakukan analisis terhadap data yang didapat

berdasarkan pengukuran. Dalam sub bab Analisa data akan di bahas akan lebih

dibahas pada bab ini pada sub bab analisa data .

4.2.2 Analisis Penentuan Gangguan Link STO Jatinegara- STO Semanggi

Pada link STO Jatinegara terdapat 6 splice dengan panjang kabel 12,8 Km

dengan dan core sebanyak 36 core. Untuk mengetahui bagaimana skema jalur

transmisi pada link tersebut dapat dilihat pada gambar 4.3.

Page 70: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

53

Gambar 4.3 Skema Jalur Transmisi Kabel Optik pada link STO

Jatinegara- STO Semanggi

Pada gambar 4.3 terlihat jarak masing- masing titik sambungan yang berbeda-

beda. . Data jarak titik sambungan(splice) pada jalur transmisi di link tersebut

berdasarkan pengukuran melalui alat ukur OTDR,contoh hasil pengukuran dapat

dilihat pada lampiran IV.Setiap core memiliki titik splice yang sama, namun pada

saat pengukuran di alat ukur OTDR, ada beberapa titik splice tidak terbaca dan

tidak akan tampil pada pengukuran bila loss splice yang terjadi pada tiap titik

sambungannya 0 dB. Pada gambar 4.3 terlihat pada titik splice yang ke dua

berjarak pada 5,1 Km dari STO Jatinegara . Kemudian pada titik splice yang ke

tiga terpadat pada 5,8 Km dari STO Jatinegara. Pada titik splice yang ke empat

terdapat pada 7,2 Km dari STO Jatinegara. Pada titik splice yang ke 5 berjarak

pada 10 Km dari STO Jatinegara. Pada titik splice ke enam berjarak pada 10,8

Km dari STO Jatinegara.

Melihat lampiran IV pada tabel 5 pada link STO Jatinegara- STO

Semanggi terlihat adanya loss splice yang melebihi standar perhitungan pada core

1, 2, 13, 14, 16, 20, 21,23,24,26,32 dan35. Pada link tersebut perhitungan loss

splice bersarkan rumus perhitungan link power budgetpada bab II yang diinjinkan

adalah 2,1 dB. Namun ternyata berdasarkan hasil pengamatan pengukuran OTDR

yang dilihat dari tabel 5 pada lampiran IV terlihat bahwa core-core tersebut

memiliki loss splice yang melebihi perhitungan teoritis berdasarkan parameter

standar.

Kemudian, dengan melihat dari hasil pengamatan loss splice yang tidak

melebihi perhitungan teoritis, mengakibatkan daya penerimaan megalami

penurunan akibat loss splice yang melebihi perhitung teoritis. Dengan adanya

permasalahan tersebut maka perlu dilakukan analisis terhadap data yang didapat

Page 71: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

54

berdasarkan pengukuran. Dalam sub bab Analisa data akan di bahas akan lebih

dibahas pada sub bab analisa data .

4.2.3 Analisis Penentuan Gangguan Link STO Jatinegara- STO Gambir 1

Pada link STO Jatinegara terdapat 6 splice dengan panjang kabel 10,5 Km

dengan dan coresebanyak 36 core. Untuk mengetahui bagaimana skema jalur

transmisi pada link tersebut dapat dilihat pada gambar 4.4.

Gambar 4.4 Skema Jalur Transmisi Kabel Optik pada link STO

Jatinegara- Gambir 1

Pada gambar 4.4 terlihat jarak masing- masing titik sambungan yang

berbeda- beda. Data jarak titik sambungan pada link tersebut berdasarkan

pengukuran melalui alat ukur OTDR, contoh hasil pengukuran dapat dilihat pada

lampiran IV.Setiap core memiliki titik splice yang sama, namun pada saat

pengukuran di alat ukur OTDR, ada beberapa titik splice tidak terbaca dan tidak

akan tampil pada pengukuran bila losssplice yang terjadi pada tiap titik

sambungannya 0 dB. Pada gambar 4.3 terlihat pada titik splice yang ke dua

berjarak pada 1,7 Km dari STO Jatinegara . Kemudian pada titik splice yang ke

tiga terdapat pada 3,9 Km dari STO Jatinegara. Pada titik splice yang ke empat

terdapat pada 4,8 Km dari STO Jatinegara. Pada titik splice yang ke 5 berjarak

pada 5,2 Km dari STO Jatinegara. Pada titik splice ke enam berjarak pada 6,9 Km

dari STO Jatinegara.

Melihat lampiran IV pada tabel 6 pada link STO Jatinegara- STO Gambir1

terlihat adanya loss yang melebihi perhitungan teoritis berdasarkan parameter

yang ada terjadi pada core 2,6, 19, 23, 33,34,35, dan 36. Pada link tersebut

perhitungan loss splice bersarkan rumus perhitungan link power budget pada bab

II yang diinjinkan adalah 2,1 dB. Namun ternyata berdasarkan hasil pengamatan

pengukuran OTDR yang dilihat dari tabel 6 pada lampiran IV terlihat bahwa

core-core tersebut memiliki loss splice yang melebihi perhitungan teoritis

berdasarkan parameter standar.

Page 72: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

55

Kemudian, dengan melihat dari hasil pengamatan loss splice yang tidak

melebihi perhitungan teoritis, mengakibatkan daya penerimaan megalami

penurunan akibat loss splice yang melebihi perhitung teoritis. Dengan adanya

permasalahan tersebut maka perlu dilakukan analisis terhadap data yang didapat

berdasarkan pengukuran. Dalam sub bab Analisa data akan di bahas akan lebih

dibahas pada sub bab analisa data .

4.3 Analisis Data

Untuk proses analisa data hal yang perlu diketahui adalah mengetahui

dahulu masalah apa yang dapat menyebabkan terjadinya gangguan. Seperti yang

telah dijelaskan pada sub bab sebelumnya yaitu sub bab 4.2, untuk melakukan

analisa data hal yang perlu dilakukan adalah melihat hasil pengukuran dari

OTDR-nya dan melihat data yang ditampilkan pada alat ukur tersebut. Dalam

melakukan analisa, hal yang perlu dilihat adalah besarnya loss fiber, loss splice,

jarak jalur kabel optik apakah sesuai dengan yang di targetkan ataukah sebaliknya

yaitu terjadinya kabel putus yang and to end nya tidak sesuai jarak yang di

targetkan. Dalam bab ini akan membahas masalah yang terjadi antar 3 link di PT

Telkom Anet Jatinegara yakni menganalisa penyebab terjadinya gangguan yang

bisa terjadi akibat loss splice dan loss fiber yang tidak sesuai dengan perhitungan

teoritis berdasarkan parameter standar yang ada.

4.3.1 Perhitungan Loss

Untuk proses menganalisa data, hal yang dianalisis penulis yaitu

identifikasi dari hasil pengukuran OTDR. Pada OTDR akan terlihat kabel optik

yang mengalami gangguan redaman yang di dapat dilapangan secara real dengan

membandingkan analisa perhitungan berdasarkan parameter standar yang di

perbolehkan antara STO Jatinegara- Kebayoran, STO Jatiengara- Semanggi, dan

STO Jatinegara- STO Gambir1.Perhitungan teoritis yang diperbolehkan

berdasarkan parameter standar untuk mengetahui besar loss yang diperbolehkan

masing- masing core pada serat optik antar STO tersebut. Untuk standar yang

digunakan adalah berdasarkan standar Fiber Optic Association EIA/TIA 568pada

Page 73: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

56

lampiran III. Setelah itu, dengan mengetahui besar loss yang diperbolehkan maka

akan terlihat banyaknya core yang memenuhi perhitungan teoritis dan yang

melebihi perhitungan teoritis untuk mengetahuicore mana saja yang mengalami

kerusakan. Hal ini bisa terjadi pada loss fiber dan loss splice yang melebihi

perhitungan teoritis berdasarkan parameter standar.

1. Link STO Jatinegara- STO Kebayoran

Untuk link pada STO Jatinegara ke STO Kebayoran, sepanjang kabel serat

optik pada link tersebut memiliki banyak core sebanyak 72 core. Kemudian untuk

kabel optik yang digunakan untuk pada link STO Jatinegara ke STO Kebayoran

menggunkan kabel jenis singlemode dengan tipe kabel yaitu tipe G655 Merk dari

Silec Cable. Untuk mengetahui detail sepesifikasi dari tipe kabel serat optik yang

digunakan dapat dilihat pada lampiran II.

a. Perhitungan Lossberdasarkan parameter standar

Perhitungan loss standar pada pembahasan bab ini yaitu bedasarkan

rumus yang dapat dilihat pada bab II mengenai perhitungan redaman di sub bab

Link Power Budget. Sehingga dari rumus tersebut, maka perhitungan loss sesuai

standar yang diijinkan pada link STO Jatinegara- Kebayoran adalah sebagai

berikut :

Loss fiber = 14,5 Km x 0,22 dB/Km = 3,19 dB

Loss splice= 7 Splicex 0,3 dB/Splice = 2,1 dB +

Total Loss =5,29dB

Dari perhitungan loss yang mengacu pada standarFiber Optic Association

EIA/TIA 568, untuk link antara STO Jatinegara dengan STO Kebayoran terlihat

bahwa dengan panjang kabel fiber sepanjang 14,5 Km, loss kabel standar yang

diperbolehkan adalah sebesar 3,19 dB dan total loss sebesar 5,29 dB.Sedangkan

untk loss sambungan (splice) pada kabel kabel dengan jumlah sambungan

Page 74: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

57

sebanyak 7 buah, maka standard losstitik sambungan (splice) yang diperbolehkan

adalah sebesar 2,1 dB. Maka Bila pada core tertentu pada kabel serat optik ada

yang tiap titik sambungan (splicenya) atau total dari masing- masing lossada yang

melebihi dari loss perhitungan berdasarkan parameter standar, maka kabel

tersebutdinyatakan kabel mengalami kerusakan.

b. Pengukuran Loss di Lapangan

Loss Fiber

Berdasarkan lampiran IVmerupakan hasil dari pengukuran loss

berdasarkan loss dilapangan yang diukur dengan alat ukur OTDR yang telah

diamati, dihitung hasil pengukurannya dan dimasukkan ke dalam tabel untuk

mempermudah menganalisis loss tiap titik nya. Pada pengukuran loss fiber data

yang perlu diamati berdasarkan hasil pengukuran di lampiran IVtabel 1pada

kolom slope (dm/km) adalah nilai loss fiber yang dialami pada kabel optik di link

tersebut.

Dari keseluruhan hasil pengkuran loss berdasarkan tabel 2 pada lampiran

IV kabel pada link STO Jatinegara- STO Kebayoran tidak mengalami loss fiber

yang melebihi perhitungan sehingga kabel yang dipakai masih dapat digunakan.

Dari hasil pengkuran loss fiber berdasarkan lampiran IVtabel 1, dari seluruh core

ditiap titik splice-nya memilki loss fibermulai dari 0,111dB padacore 2 di titik

spliceke 1 sampai dengan 0,986 dBpada core 52 dititik spliceke 7.Oleh karena itu,

setelah melakukan pengamatan berdasarkan pengukuran, analisis untuk loss fiber

tidak dilakukan pada link tersebut karena terlihat dari semua core pada link STO

Jatinegara- STO Kebayoran memiliki loss fiber yang masih memenuhi

perhitungan.

Loss Splice

Berdasarkan lampiran IVmerupakan data keseluruhan berdasarkan dari

hasil pengukuran loss berdasarkan loss splice dilapangan yang diukur dengan alat

ukur OTDR yang telah diamati. Kemudian hasil pengukuran dihitung dan

dimasukkan ke dalam tabel untuk mempermudah melihat loss splice tiap titik

Page 75: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

58

nya.Kemudian pada tabel 4, hasil pengukuran dihitung dan dimasukkan ke dalam

tabel untuk mempermudah melihat loss splice tiap titik nya.OTDR hanya

membaca loss splice-ya yang lebih dari 0 (nol) dB. Oleh karena itu yang akan di

analisis pada bab ini adalah titik splice (penyambungan) yang terlihat pada alat

ukur yang mengalami loss penurunan antar titik yang terlihat pada grafik alat

ukur.

Pada lampiran IV tabel 4 merupakan hasil keseluruhan berdasarkan

pengamatan dari pengukuranalat ukur yang dimasukkan ke tabel pada aplikasi

Microsoft Excel agar mempermudah dalamn pengamatan dan perhitungan total

loss splice dari beberapa splice tiap core-nya pada analisis loss splice di link STO

Jatinegara- STO Kebayoran. Untuk melihat core mana saja yang mengalami loss

splicetiap splicedan totalloss splice pada masing- masing coreyang melebihi

standar dapat pada tabel 4.1.

Tabel 4.1 Tabel hasil pengukuran loss berdasarkan pengukuran loss splice

di lapangan link STO Jatinegara – STO Kebayoran

No No.

Core

Loss Splice (dB) Total

Loss

Splice

(dB)

1 2 3 4 5 6 7

1 15 0 0,506 0 3,299 0,365 3,193 0 7,363

2 22 0 0 0 5,264 0 0,427 0,277 6,328

3 23 0 0 0,219 3,421 0,317 3,211 0,112 7,280

4 26 0 0 0 0 0,353 3,326 0 3,498

5 29 0 0 0 5,624 0 0,327 0,877 7,288

6 33 0 3,224 0 2,260 1,329 0 0 6,810

7 39 0 0 2,157 0,825 0,561 3,265 2,116 6,803

8 47 0 0 0 3,629 0 1,408 1,334 6,371

9 49 0 0,316 0 0 1,256 2,413 2,608 6,863

10 52 0 0,205 2,214 0,534 1,200 0 3,202 7,947

11 53 0 0,263 0 0 0,966 0,981 3,486 6,696

12 54 0 0 0 3,624 2,327 1,277 0 7,228

13 63 0 5,392 0 0 0,623 0,243 0 6,858

Berdasarkan hasil pengukuran loss splice pada tabel 4.1, terlihat tiap-tiap

core memiliki besaran loss splice yang berbeda- beda tiap splice-nya. Terlihat

pada tabel, ada beberapa core yang di beberapa titik splice-nya mengalami loss

splice melebihi perhitungan teoritis berdasarkan parameter standar yaitu pada

nomor core 15,22,23,26, 29,33,39,47,49,52,53,54 dan 63 dengan loss mulai dari

Page 76: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

59

2,116 dB pada core 39 di titik splice ke 7 sampai 5,397 dB pada core 63 titik

spliceke 2. Kemudian untuk total loss splicenya mulai dari 3,498 dB sampai

7,947 dB yang dapat dilihat keseluruhan loss splice tiap core-nya pada tabel 4.1.

Maka,untuk core yang mengalami loss splice paling tinggi yang tidak sesuai

perhitungan teoritis loss splice-nya terdapat pada nomor core 63 pada splice ke 2

dengan loss splice sebesar 5,392 dB dengan total loss tertinngi pada nomor core

10 sebesar 7,747 dB.

Perbandingan hasil dari pegukuran di lapangan dengan perhitungan

bersadarkan parameter standarpada link STO Jatinegara- STO Kebayoran

Dari hasil perbandingan hasil pengukuran loss berdasarkan total loss splice

dan total loss fiber di lapangan pada lampiran IV tabel 1 dan 4 dan analisis

perbandingan pengukuran di lapangan dan perhitungan berdasarkan pada

parameter standar terdapat pada tabel 7, terlihat bahwa tiap core mengalami total

loss splice dan total loss fiber yang berbeda- beda. Terlihat pada tabel ada banyak

core yang masih mengalami total loss splice dan total loss fiber yang masih

memenuhi perhitungan berdasarkan parameter standar, sehingga nomor core

tersebut masih baik untuk digunakan. Hal tersebut dapat dilihat pada tabel yaitu

nomor core dengan besar total loss splice tidak melebihi perhitungan yaitu sebesar

2,1 dB melainkan total loss splice sebesar mulai dari 0,48 dB sampai 2,0 dB.

Namun ternyata pada tabel ada beberapa core yang mengalami total loss splice

melebihi perhitungan berdasarkan parameter standar .Ini bisa dilihat pada nomor

core yaitu nomor core 15, 22, 23, 26, 29, 33, 39, 47, 49, 52, 53, 54, dan 63

masing- masing core tersebut mengalami total loss splice yang melebihi

perhitungan teoritis total loss splice sebesar 2,1 dB, yaitu mulai dari 6,32 dB

sampai 7,94 dB . Total loss fiber yang paling tinggi terjadi pada nomor core 52

dengan totalloss splice sebesar 7,947 dB.

Jadi berdasarkan hasil pengukuran padalampiran IV tabel 1, 4 dan analisis

dari hasil pengukuran dan perhitungan berdasarkan parameter standar terdapat

pada tabel 7, dinyatakn bahwa kabel pada link STO Jatinegara ke STO Kebayoran

mengalami gangguan penerunan penerimaan daya optik (receiver) akibat ketidak

sempurnaan pada penyambungan kabel (splicing) yang dilakukan pihak teknisi di

Page 77: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

60

lapangan.Dengan hal tersebut, gangguan ini dapat menggangu sistem

telekomunikasi terutama pada link STO Jatinegara menuju ke STO Kebayoran.

2. Link STO Jatinegara- Semanggi

Untuk link pada STO Jatinegara ke STO Semanggi, sepanjang kabel serat

optik pada link tersebut memiliki banyak core sebanyak 36core. Kemudian untuk

kabel optik yang digunakan untuk pada link STO Jatinegara ke STO Semanggi

adalah jenis Singlemodedari Silec Cable dengan tipe G 652. Untuk mengetahui

detail spesifikasi dari tipe kabel serat optik yang digunakan dapat di lihat pada

lampiran IV.

a. Perhitungan Lossberdasarkan parameter standar

Perhitungan loss standar pada pembahasan bab ini yaitu bedasarkan

rumus yang dapat dilihat pada bab II mengenai perhitungan redaman di sub bab

Link Power Budget. Sehingga dari rumus tersebut, maka perhitungan loss sesuai

standar yang diijinkan pada link STO Jatinegara- STO Semanggi adalah sebagai

berikut :

Loss fiber = 12,8 Km x 0,21 dB/Km = 2,69 dB

Loss splice= 6Splicex 0,3 dB/Splice = 1,8 dB +

Total Loss = 4,49 dB

Dari perhitungan loss yang mengacu pada standarFiber Optic Association

EIA/TIA 568pada lampiran III, untuk link antara STO Jatinegara dengan STO

Semanggi terlihat bahwa dengan panjang kabel fiber sepanjang 12,8 Km, loss

kabel standar yang diperbolehkan adalah sebesar 2,69 dB dengan total loss

sebesar 4,49dB. Sedangkan untk loss titik sambungan (splice) pada kabel fiber

dengan jumlah sambungan sebanyak 6 buah, maka standarlosssambungan (splice)

yang diperbolehkan adalah sebesar 1,8 dB. Maka Bila pada core tertentu pada

kabel serat optik ada yang tiap titik sambungan (splicenya) atau total dari masing-

masing loss ada yang melebihi dari loss perhitungan berdasarkan parameter

standar, maka kabel tersebutdinyatakan kabel mengalami kerusakan.

Page 78: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

61

b. Pengukuran Loss di Lapangan

Loss Fiber

Berdasarkan lampiran IV merupakan hasil dari pengukuran loss

berdasarkan loss dilapangan yang diukur dengan alat ukur OTDR yang telah

diamati. Kemudian pada tabel 2 hasil pengukuran dihitung dan dimasukkan ke

dalam tabel untuk mempermudah menganalisis loss tiap titik nya. Pada

pengukuran loss fiber data yang perlu diamati pada alat ukur OTDR berdasarkan

hasil pengukuran di lampiran IV tabel 1pada kolom slope (dB/km) adalah nilai

loss fiber yang dialami pada kabel optik di link tersebut.

Dari keseluruhan hasil pengkuran loss berdasarkan tabel 2 pada lampiran

IV kabel pada link STO Jatinegara- STO Semanggi tidak mengalami loss fiber

yang melebihi perhitungan bedasarkan perhitungan teoritis parameter

standarsehingga kabel yang dipakai masih dapat digunakan.Dilihat pada

lampiran IVtabel 2 dari seluruh core ditiap titik splicenya memilki loss

fibermulai dari 0,078 dB pada core 8 di titik splice ke 2 sampai dengan 1,789

dB pada core 20 dititik spliceke 2.Oleh karena itu, setelah melakukan

pengamatan berdasarkan pengukuran, analisis untuk loss fiber tidak dilakukan

pada link tersebut karena terlihat dari semua core pada link STO Jatinegara-

Semanggi memiliki loss fiber yang masih memenuhi standar.

Loss Splice

Berdasarkan lampiran IV tabel 5, merupakan data keseluruhan

berdasarkan dari hasil pengukuran loss berdasarkan loss splice dilapangan yang

diukur dengan alat ukur OTDR yang telah diamati. Kemudian hasil pengukuran

dihitung dan dimasukkan ke dalam tabel untuk mempermudah melihat loss splice

tiap titik nya.OTDR hanya membaca loss splice-nya yang lebih dari 0 (nol) dB.

Oleh karena itu yang akan di analisis pada bab ini adalah titik splice

(penyambungan) yang terlihat pada alat ukur yang mengalami loss penurunan

antar titik yang terlihat pada grafik alat ukur.

Pada lampiran IV tabel 5, merupakan hasil pengamatan dari pengukuran

ynag dimasukkan ke tabel pada aplikasi Microsoft Excel agar mempermudah

dalamn pengamatan dan perhitungan total loss splice dari beberapa splice tiap

Page 79: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

62

core-nya pada analisis loss splice di link STO Jatinegara- STO Semanggi. Untuk

melihat core mana saja yang mengalami loss splicetiap splicedan totalloss splice

pada masing- masing core yang tidak memenuhi standar dapat pada tabel 4.2.

Tabel 4.2 Tabel hasil pengukuran loss berdasarkan pengukuran loss splice di lapangan

link STO Jatinegara- STO Semanggi

No No

Core

Loss Splice (dB) Total

Loss

Splice(dB)

1 2 3 4 5 6

1 1 0 0 2,840 0,645 1,166 0,173 4,824

2 2 0 0,229 2,652 1,454 0 0 4,335

3 13 0 0,178 3,356 2,757 0,265 0,150 6,706

4 14 0 3,624 0,532 0 0 1,277 5,433

5 16 0 3,624 0,532 0 0 0,577 5,233

6 20 0 2,445 0,867 0,195 0,166 0,445 4,118

7 21 0 1,664 0,341 0 0 3,224 5,229

8 23 0 2,124 0 1,854 0 0,177 4,155

9 24 0 2,567 0 1,518 0,456 0,310 4,672

10 26 0 1,824 0 1,854 0 0,177 3,855

11 32 0 2,345 0,934 0,734 0,728 0 4,741

12 35 0 0,155 1,952 1,288 0,355 0,532 4,282

Berdasarkan hasil pengukuran loss splice pada tabel 4.2, terlihat tiap-tiap

core memiliki besaran loss splice yang berbeda- beda tiap splicenya. Terlihat pada

tabel, hasil analisis dari perbandingan pengukuran dilapangan dan perhitungan

teoritis pada tabel 7,core yang di beberapa titik splice-nya mengalami loss splice

melebihi perhitungan teoritis berdasarkan parameter standar yaitu pada nomor

core 1,2,13,14,16,20,21,23,24,26,32 dan 35 dengan loss mulai dari 2,757 dB pada

core 13 di titik splice ke 4 sampai 3,624 dB pada core 14 dan 16 di titik splice ke

2 . Kemudian untuk total loss splicenya mulai dari 3,855 dB sampai 6,706 dB

yang dapat dilihat loss splicenya pada tabel 4.1. Maka, untuk core yang

mengalami loss splice paling tinggi yang tidak sesuai perhitungan teoritis, loss

splice-nya terdapat pada nomor core 14 dan 16 pada splice ke 2 dengan loss splice

sebesar 3,624 dB dan total loss splice paling tertinggi pada nomor core 14 dan 16

dengan total loss splice sebesar 5,433 dB dan 5,233 dB.

Perbandingan hasil dari pegukuran di lapangan dan perhitungan

bersadarkan parameter standar pada link STO Jatinegara- STO Semanggi

Page 80: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

63

Dari hasil perbandingan hasil pengukuran loss berdasarkan total loss splice

dan total loss fiber di lapangan pada lampiran IV tabel 2 dan 5 dan analisis

perbandingan pengukuran di lapangan dan perhitungan berdasarkan parameter

standar terdapat pada tabel 8, terlihat bahwa tiap core mengalami total loss splice

dan total loss fiber yang berbeda- beda. Terlihat pada tabel ada banyak core yang

masih mengalami total loss splice dan total loss fiber yang masih di memenuhi

perhitungan berdasarkan parameter standar, sehingga nomor core tersebut masih

baik untuk digunakan. Hal tersebut dapat dilihat pada tabel yaitu pada nomor core

dengan besar total loss splice tidak melebihi perhitungan yaitu sebesar 1,8 dB

melainkan total loss splice sebesar mulai dari 0,384 dB sampai 2,665 dB. Namun

ternyata pada tabel ada beberapa core yang mengalami total loss splice tidak

memenuhi perhitungan. Ini bisa dilihat pada nomor core yang di blok warna abu-

abu yaitu nomor core 1,2,13,14,16,20,21,24,26 dan 32, masing- masing core

tersebut mengalami total loss splice sebesar mulai dari 3,855 dBsampai 6,706 dB.

Total loss fiber yang paling tinggi terjadi pada nomor core 13 dengan totalloss

splice sebesar 6,706 dB.

Jadi berdasarkan hasil pengukuran pada lampiran IVtabel 2, 4 dan analisis

dari hasil pengukuran dan perhitungan berdasarkan perhitungan standar terdapat

padatabel 8, dinyatakan bahwa kabel pada link STO Jatinegara ke STO Semanggi

mengalami gangguan penurunan penerimaan daya optik (receiver) akibat ketidak

sempurnaan pada penyambungan kabel (splicing) yang dilakukan pihak teknisi di

lapangan. Dengan hal tersebut, gangguan ini dapat menggangu sistem

telekomunikasi keseluruhan terutama pada link STO Jatinegara sampai ke STO

Semanggi.

3. Link STO Jatinegara- STO Gambir1

Page 81: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

64

Untuk link pada STO Jatinegara ke STO Gambir1, sepanjang kabel serat

optik pada link tersebut memiliki banyak core sebanyak 36core. Kemudian untuk

tipe kabel optik yang digunakan untuk pada link STO Jatinegara ke STO Gambir1

adalah tipe G 652 dari Silec Cable. Untuk mengetahui detail sepesifikasi dari tipe

kabel serat optik yang digunakan dapat di lihat pada lampiran III.

a. Perhitungan Lossberdasarkan parameter standar

Perhitungan loss standar pada pembahasan bab ini yaitu bedasarkan

rumus yang dapat dilihat pada bab II mengenai perhitungan redaman di sub bab

Link Power Budget. Sehingga dari rumus tersebut, maka perhitungan loss sesuai

standar yang diijinkan pada link STO Jatinegara- Gambir1 adalah sebagai berikut

:

Loss fiber = 10,5 Km x 0,21 dB/Km = 2,20 dB

Loss splice= 6Splicex 0,3 dB/Splice = 1,8 dB +

Total Loss = 4,0 dB

Dari perhitungan lossyang mengacu pada standarFiber Optic Association

EIA/TIA 568 pada lampiran III, untuk link antara STO Jatinegara dengan STO

Gambir1 terlihat bahwa dengan panjang kabel optik sepanjang 10,5 Km, loss

standar yang diperbolehkan adalah sebesar 2,20 dB. Sedangkan untuk loss

sambungan (splice) pada kabel fiber dengan jumlah sambungan sebanyak 6 buah,

maka standard losssambungan (splice) yang diperbolehkan adalah sebesar 1,8 dB.

Maka Bila pada core tertentu pada kabel serat optik ada yang tiap titik sambungan

(splice-nya) atau total dari masing- masing loss ada yang melebihi dari loss

perhitungan berdasarkan parameter standar, maka kabel tersebutdinyatakan kabel

mengalami kerusakan.

b. Pengukuran Loss di Lapangan

Loss Fiber

Berdasarkan lampiran IV, merupakan hasil dari pengukuran loss

berdasarkan loss dilapangan yang diukur dengan alat ukur OTDR yang telah

diamati, dihitung hasil pengukurannya dan dimasukkan ke dalam tabel untuk

Page 82: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

65

mempermudah menganalisis loss tiap titik nya. Pada pengukuran loss fiber data

yang perlu diamati berdasarkan hasil pengukuran di lampiran IV tabel 3 pada

kolom slope (dm/km) yang terlihat pada alat ukur OTDR adalah nilai loss fiber

yang dialami pada kabel optik di link tersebut.

Dari keseluruhan hasil pengkuran loss berdasarkan tabel 3 pada lampiran

IV kabel pada link STO Jatinegara- STO Gambir 1 tidak mengalami loss fiber

yang melebihi perhitungan bedasarkan perhitungan parameter standarsehingga

kabel yang dipakai masih dapat digunakan.Dilihat pada lampiran IV tabel 3 dari

seluruh core ditiap titik splic-enya memilki loss fibermulai dari 0,085dB pada

core 12 di titik splice ke 2 sampai dengan 1,182 dBpada core 2 dititik splice ke

2.Oleh karena itu, setelah melakukan pengamatan berdasarkan pengukuran,

analisis untuk loss fiber tidak dilakukan pada link tersebut karena terlihat dari

semua core pada link STO Jatinegara- Gambir 1 memiliki loss fiber yang masih

memenuhi standar.

Loss Splice

Berdasarkan lampiran IV merupakan hasil dari pengukuran loss

berdasarkan loss splice dilapangan yang diukur dengan alat ukur OTDR yang

telah diamati, dihitung hasil pengukurannya dan dimasukkan ke dalam tabel untuk

mempermudah melihat loss splice tiap titik nya.OTDR hanya membaca loss

splice-nya yang lebih dari 0 (nol) dB. Oleh karena itu yang akan di analisis pada

bab ini adalah titik splice (penyambungan) yang terlihat pada alat ukur yang

mengalami loss penurunan antar titik yang terlihat pada grafik alat ukur.

Pada lampiran IV tabel 6 merupakan hasil keseluruhan berdasarkan

pengamatan dari pengukuran yang dimasukkan ke tabel pada aplikasi Microsoft

Excel agar mempermudah dalamn pengamatan dan perhitungan total loss splice

dari beberapa splice tiap core-nya pada analisis loss splice di link STO Jatinegara-

STO Gambir 1 . Untuk melihat core mana saja yang mengalami loss splicetiap

splicedan totalloss splice pada masing- masing coreyang tidak memenuhi standar

dapat pada tabel 4.3.

Tabel 4.3 Tabel hasil pengukuran loss berdasarkan pengukuran loss splice di

lapangan link STO Jatinegara- STO Gambir1

Page 83: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

66

No No

Core

Loss Splice (dB) Total

Loss

Splice

(dB)

1 2 3 4 5 6

1 2 0 2,556 0,234 2,332 0,117 0,145 5,384

2 6 0 1,889 0,871 2,663 0,667 0,213 6,303

3 9 0 2,447 1,314 0,256 0,344 0,117 4,478

4 15 0 2,336 3,113 0,114 0,154 0,122 5,839

5 19 0 0,915 1,778 0,892 1,144 0,219 4,948

6 23 0 0,889 2,668 2,115 0,162 0,187 6,021

7 33 0 2,667 1,534 0,983 0,556 0,167 5,907

8 34 0 2,267 1,983 1,556 0,263 0,172 6,241

9 35 0 2,883 1,978 1,562 0,875 0 7,298

10 36 0 0,263 0,665 2,667 2,882 0,981 7,458

Berdasarkan hasil pengukuran loss splice pada tabel 4.3, terlihat tiap-tiap

core memiliki besaran loss splice yang berbeda- beda tiap splice-nya. Terlihat

pada tabel,core yang di beberapa titik splicenya ada yang mengalami loss splice

melebihi perhitungan standar yaitu pada nomor core 2,6,9,19.23.33-36 dengan

loss mulai dari 1,889 dB pada core 6 di titik splice ke 2 sampai 2,667 dB pada

core 36 di titik splice 4 . dan total loss splice-nya mulai dari 4,948 dB sampai

7,458 dB yang dapat Maka, untuk core yang mengalami loss splice paling tinggi

yang tidak sesuai perhitungan teoritisloss splice-nya terdapat pada nomor core35

pada splice ke 2 dengan loss splice sebesar 3,624 dB dan total loss splice tertinggi

pada core 36 dengan total total loss splice sebesar 7,458 dB.

Perbandingan hasil pengukurandi lapangan dan perhitungan berdasarkan

parameter standar pada link STO Jatinegara- STO Gambir1

Dari hasil perbandingan hasil pengukuran loss berdasarkan total loss splice

dan total loss fiber di lapangan pada lampiran IV tabel 3 dan 6 dan analisis

perbandingan pengukuran di lapangan dan perhitungan berdasarkan parameter

standar terdapat pada tabel 9, terlihat bahwa tiap core mengalami total loss splice

dan total loss fiber yang berbeda- beda. Terlihat pada tabel ada banyak core yang

masih mengalami total loss splice dan total loss fiber yang masih di memenuhi

perhitungan, sehingga nomor core tersebut masih baik untuk digunakan. Hal

tersebut dapat dilihat pada tabel yaitu pada nomor core dengan besar total loss

splice tidak melebihi perhitungan yaitu sebsar 1,8 dB melainkan total loss splice

sebesar mulai dari 0,378 dB sampai 2,263 dB. Namun ternyata pada tabel ada

Page 84: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

67

beberapa core yang mengalami total loss splice tidak memenuhi perhitungan.Ini

bisa dilihat pada nomor core yang di blok warna abu-abu yaitu nomor core

2,6,9,19,23,33-36 masing- masing core tersebut mengalami total loss splice

sebesar mulai dari 4,478 dB sampai 7,458 dB. Total loss fiber yang paling tinggi

terjadi pada nomor core 36 dengan totalloss splice sebesar 7,458 dB.

Jadi berdasarkan hasil pengukuran pada lampiran IVtabel 3, 6 dan analisis

dari hasil pengukuran dan perhitungan di tabel 9 dinyatakn bahwa kabel pada link

STO Jatinegara ke STO Gambir 1 mengalami gangguan penerunan penerimaan

daya optik (receiver) akibat ketidak sempurnaan pada penyambungan kabel

(splicing) yang dilakukan pihak teknisi di lapangan. Dengan hal tersebut,

gangguan ini dapat menggangu sistem telekomunikasi keseluruhan terutama pada

link STO Jatinegara sampai ke STO Gambir 1.

4.3.2 Perhitungan Daya Penerimaan Optik (Receiver)

Setelah menghitung loss yang terdapat pada kabel optik link STO

Jatinegara- STO Kebayoran, STO Jatinegara – STO Semanggi dan STO

Jatinegara – STO Gambir1, maka analisis dapat dilanjutkan untuk menganalisis

daya penerimaan yang diterima pada perangkat optik. Perhitungan dapat

dilakukan dengan menghitung daya yang dikirimkan dengan loss total pada kabel

dan margin untuk daya pengirim optik (transmitternya).

1. Link STO Jatinegara – Kebayoran

Pada link STO Jatinegara- STO Kebayoran untuk daya transmitter yang

digunakan pada perangkat yaitu sebesar 1,67 dBm dan margin (nilai untuk

mengkompensasi redaman pada kabel optic berdasarkan standar Fiber Optic

Association) pada link ini yaitu sebesar 2 dB. Standar daya transmitterdan

receiverdapat dilihat pada lampiran III.

Daya Penerimaan berdasarkan parameter standar

Perhitungan daya penerimaan berdasarkan parameter standar pada

pembahasan bab ini yaitu bedasarkan rumus yang dapat dilihat pada bab II

mengenai perhitungan redaman di sub bab Link Power Budgethalaman 31.

Sehingga dari rumus tersebut, maka perhitungan daya penerimaan (Prx)

sesuai parameter standar yang diijinkan pada link STO Jatinegara- STO

Page 85: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

68

Kebayoran adalah sebagai berikut :

Prx = Ptx –( Total Loss + Margin)

= 1,67 dBm- (5,29 dB + 2 dB)

Prx = -5,62 dBm

Dari hasil perhitungan daya penerimaan optik tersebut, pada link STO

Jatinegara – STO Kebayoran daya penerimaan optik yang baik tidak boleh kurang

-5,62 dBm. Bila pada nomor core di link tersebut mengalami daya kurang dari -

5,62 dBm, maka link tersebut mengalami penururan daya penerimaan yang bisa

diakibatkan oleh loss pada link tersebut yang melebihi perhitungan teoritis.Pada

tabel 4.4. penulis memasukkan hasil analisis penerimaan daya optik (receiver)

yang telah di analisis berdasarkan rumus perhitungan daya penerimaan pada bab

II dari data- data hasil pengukuran yang terdapat pada lampiran IV tabel 10.

Tabel 4.4 Analisis perhitungan Daya Penerimaan Optik ( Receiver)pada link STO Jatinegara- STO

Kebayoran

No Nomor Core Ptx (dBm) Total Loss (dB) Prx berdasarkan

Pengukuran (dBm)

Prx berdasarkan

Perhitungan (dBm)

1 15 1,67 9,515 -7,845

-5,62

2 22 1,67 8,231 -6,561

-5,62

3 23 1,67 7,280 -6,095

-5,62

4 26 1,67 8,321 -6,651

-5,62

5 29 1,67 9,395 -7,725

-5,62

6 33 1,67 9,137 -7,467

-5,62

7 39 1,67 9,565 -7,895

-5,62

8 47 1,67 8,165 -6,495

-5,62

9 49 1,67 9,487 -7,817

-5,62

10 52 1,67 9,911 -8,241

-5,62

11 53 1,67 9,203 -7,533

-5,62

12 54 1,67 9,799 -8,129

-5,62

13 63 1,67 9,678 -8,008

-5,62

Dari tabel 4.4 menunjukkan tabel yang memperlihatkan analisis untuk

perhitungan daya penerima optik (receiver) pada link STO Jatinegara – STO

Kebayoran. Dari hasil analisis pada tabel 4.4 terlihat bahwa terdapat beberapa

core yang mengalami daya penerimaan optik tidak memenuhi standar dan kurang

dari perhitungan penerimaan optik berdasarkan parameter standar sebesar -5,62

dBm yaitu pada nomor core 15, 22, 23, 26, 29, 33, 39, 47, 49,52-54 dan 63

Page 86: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

69

dengan daya penerimaan optik mulai dari -6,495 dBm sampai -8,241 dBm.

Berdasarkan tabel 4.10 core yang mengalami penurunan daya paling rendah dari

standar terdapat pada nomor core 52 dengan daya penerimaan optik (receiver)

sebesar -8,241 dBm.

Hasil tabel analisis tabel 4.4 berdasarkan hasil analisis perhitungan daya

penerimaan secara keseluruhan pada lampiran 4 tabel 10.Berdasarkan analisis ini,

dari72 core terdapat 13 core atau sekitar 18% yang mengalami kerusakan kabel.

Untuk standar kualitas kinerja saluran transmisi jaringan di PT Telkom, yaitu

kabel serat optik tidak boleh mengalami kerusakan melebihi 15% dari jumlah

keseluruhan core yang tersedia pada tiap kabel serat optik. Dengan demikian

dinyakan bahwa link STO Jatinegara- STO Kebayoran kinerja jaringan pada link

ini berfungsi dengan tidak baik, karena kerusakan yang dialami kabel serat optik

mencapai 18%.

2. Link STO Jatinegara – Semanggi

Pada link STO Jatinegara- STO Semanggi untuk daya tansmitter yang

digunakan pada perangkat yaitu sebesar 1,45dBm dan margin (nilai untuk

mengkompensasi redaman pada kabel optik berdasarkan standar Fiber Optic

Association)pada link ini yaitu sebesar 2 dB. Standar daya transmitterdan receiver

dapat dilihat pada lampiran III.

Daya Penerimaan berdasarkan parameter standar

Perhitungan daya penerimaan berdasarkan parameter standar pada

pembahasan bab ini yaitu bedasarkan rumus yang dapat dilihat pada bab II

mengenai perhitungan redaman di sub bab Link Power Budgethalaman 31.

Sehingga dari rumus tersebut, maka perhitungan daya penerimaan (Prx) sesuai

standar yang diijinkan pada link STO Jatinegara- STOSemanggi adalah sebagai

berikut :

Prx = Ptx –( Total Loss + Margin)

= 1,45 dBm- (4,49 dB + 2 dB)

Page 87: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

70

Prx = -5,04 dBm

Dari hasil perhitungan daya penerimaan optik tersebut, pada link STO

Jatinegara – STO Semanggi daya penerimaan optik yang baik tidak boleh kurang

dari -5,04 dBm. Bila pada nomor core di link tersebut mengalami daya

penerimaan kurang dari -5,04 dBm, maka dikatakan link tersebut mengalami

penururan daya penerimaan yang bisa diakibatkan oleh loss pada link tersebut

yang melebihi perhitungan lossberdasarkan parameter standar. Pada tabel 4.5.

penulis memasukkan hasil analisis penerimaan daya optik (receiver) yang telah di

analisis berdasarkan rumus perhitungan daya penerimaan pada bab II dari data-

data hasil pengukuran yang terdapat pada lampiran IVtabel11.

Tabel 4.5 Analisis perhitungan Daya Penerimaan Optik ( Receiver)pada link STO Jatinegara-

STO Semanggi

No Nomor

Core

Ptx (dBm) Total Loss

(dB)

Prx berdasarkan

Pengukuran(dBm)

Prx berdasarkan

Perhitungan (dBm)

1 1 1,45 7,652 -6,202

-5,04

2 2 1,45 6,788 -5,338

-5,04

3 13 1,45 8,29 -6,840

-5,04

4 14 1,45 8,017 -6,657

-5,04

5 16 1,45 7,013 -5,563

-5,04

6 20 1,45 7,018 -5,568

-5,04

7 21 1,45 7,988 -6,538

-5,04

8 23 1,45 6,712 -5,262

-5,04

9 24 1,45 7,079 -5,629

-5,04

10 26 1,45 7,255 -5,805

-5,04

11 32 1,45 7,203 -5,753

-5,04

12 35 1,45 7,144 -5,569

-5,04

Dari tebel 4.5 menunjukkan tabel yang memperlihatkan analisis untuk

perhitungan daya penerima optik (receiver) pada link STO Jatinegara – STO

Semanggi.Dari hasil analisis pada tabel 4.5 terlihat bahwa terdapat beberapa core

yang mengalami daya penerimaan optik tidak memenuhi standar dan kurang dari

perhitungan penerimaan optik berdasarkan parameter standar sebesar -5,04 dBm,

yaitu pada nomor core 1, 2, 13, 14, 16, 20, 21,23, 24,26 dan 32, 35 dengan daya

penerimaan optik mulai dari -5,262 dBm sampai -6,840 dBm. Berdasarkan tabel

4.5,core yang mengalami penurunan daya paling rendah dari pehitungan terdapat

pada nomorcore 13 dengan daya penerimaan optik (receiver) sebesar -6,840 dBm.

Page 88: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

71

Hasil tabel analisis tabel 4.5 berdasarkan hasil analisis perhitungan daya

penerimaan secara keseluruhan pada lampiran 4 tabel 11.Berdasarkan analisis ini,

dari 36 core terdapat 12 core atau sekitar 33% yang mengalami kerusakan kabel.

Untuk standar kualitas kinerja saluran transmisi jaringan di PT Telkom, yaitu

kabel serat optik tidak boleh mengalami kerusakan melebihi 15% dari jumlah

keseluruhan core yang tersedia pada tiap kabel serat optik. Dengan demikian

dinyakan bahwa link STO Jatinegara- STO Semanggi kinerja jaringan pada link

ini berfungsi dengan sangat tidak baik, karena kerusakan yang dialami kabel serat

optic mencapai 33%.

3. Link STO Jatinegara – Gambir 1

Pada link STO Jatinegara- STO Gambir 1 untuk daya transmitter yang

digunakan pada perangkat yaitu sebesar 1,20 dBm dan margin (nilai untuk

mengkompensasi redaman pada kabel optic berdasarkan standar Fiber Optic

Association)pada link ini yaitu sebesar 2 dB. Standar daya transmitterdan receiver

dapat dilihat pada lampiran III.

Daya Penerimaan berdasarkan parameter standar

Perhitungan daya penerimaan berdasarkan parameter standar pada

pembahasan bab ini yaitu bedasarkan rumus yang dapat dilihat pada bab II

mengenai perhitungan redaman di sub bab Link Power Budgethalaman 31.

Sehingga dari rumus tersebut, maka perhitungan daya penerimaan (Prx) sesuai

standar yang diijinkan pada link STO Jatinegara- Gambir 1 adalah sebagai

berikut:

Prx = Ptx –( Total Loss + Margin)

= 1,20 dBm- ( 4dB + 2 dB)

Prx = -4,8dBm

Dari hasil perhitungan daya penerimaan tersebut, pada link STO

Jatinegara – STO Gambir 1 daya penerimaan optik yang baik tidak boleh kurang

dari -4,8 dBm. Bila pada nomor core di link tersebut mengalami daya penerimaan

Page 89: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

72

kurang dari -4,8 dBm, maka dikatakan link tersebut mengalami penururan daya

penerimaan yang bisa diakibatkan oleh loss pada link tersebut yang melebihi

perhitungan loss berdasarkan paramter standar. Pada tabel 4.6. penulis

memasukkan hasil analisis penerimaan daya optik (receiver) yang telah di analisis

berdasarkan rumus perhitungan daya penerimaan pada bab II dari data- data hasil

pengukuran yang terdapat pada lampiran IVtabel 12.

Tabel 4.6 Analisis perhitungan Daya Penerimaan Optik ( Receiver)pada link Jatinegara-

Gambir1

No Nomor Core Ptx (dBm) Total Loss

(dB)

Prx berdasarkan

Pengukuran(dBm)

Prx berdasarkan

Perhitungan (dBm)

1 2 1,20 8,172 -6,722 -4,8

2 6 1,20 8,833 -7,383

-4,8

3 9 1,20 6,698 -5,248

-4,8

4 15 1,20 7,678 -6,102

-4,8

5 19 1,20 6,926 -5,476

-4,8

6 23 1,20 8,083 -6,633

-4,8

7 33 1,20 7,743 -6,293

-4,8

8 34 1,20 8,343 -6,893

-4,8

9 35 1,20 9,435 -7,985

-4,8

10 36 1,20 9,372 -7,922

-4,8

Dari tebel 4.6 menunjukkan tabel yang memperlihatkan analisis untuk

perhitungan daya penerima optik (receiver) pada link STO Jatinegara –

STOGambir 1. Dari hasil analisis pada tabel 4.6 terlihat bahwa terdapat beberapa

core yang mengalami daya penerimaan optik tidak memenuhi standar dan kurang

dari perhitungan penerimaan optik berdasarkan parameter standar sebesar -4,8

dBm, yaitu pada nomor core2,6,8,19,23 dan 33-36 dengan daya penerimaan optik

mulai dari -5,248 dBm sampai -7,922 dBm. Berdasarkan tabel 4.6, core yang

mengalami penurunan daya penerimaan paling rendah dari perhitungan terdapat

pada nomorcore 36 dengan daya penerimaan optik (receiver) sebesar -7,922dBm.

Hasil tabel analisis tabel 4.6 berdasarkan hasil analisis perhitungan daya

penerimaan secara keseluruhan pada lampiran 4 tabel 12.Berdasarkan analisis ini,

dari 36 coreterdapat 10 core atau sekitar 28% yangmengalami kerusakan kabel.

Untuk standar kualitas kinerja saluran transmisi jaringan di PT Telkom, yaitu

kabel serat optik tidak boleh mengalami kerusakan melebihi 15% dari jumlah

Page 90: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

73

keseluruhan core yang tersedia pada tiap kabel serat optik. Dengan demikian

dinyakan bahwa link STO Jatinegara- STO Gambir 1 kinerja jaringan pada link

ini berfungsi dengan tidak baik, karena kerusakan yang dialami kabel serat optik

sebesar 28%.

4.4 Penyebab- penyebab Gangguan pada 3 Link STO

Gangguan yang diterima oleh penerima daya optik (receiver) akan di

proses untuk mengetahui letak dari jenis gangguannya. Contoh dalam media

transmisi serat optik terdapat beberapa perangkat atau kabel optik itu sendiri yang

mengalami kerusakan sehingga bisa mempengaruhi kinerja sistem komunikasi

yang dapat mengurangi daya penerimaan optik ke sisi penerima optik (receiver).

Untuk kemudahan menentukan letak gangguan PT Telkom telah dapat

menggunakan suatu perangkat yang berfungsi untuk membantu menetukan letak

gangguan dan jenis gangguan serta memonitoring informasi sistem yang

dihasilkan, dengan kata lain untuk melakukan penannganan pada titik letak

gangguan, sudah dapat diketahui dengan alat ukur bila terjadi gangguan pada

transmisi yang diterima penerima optik ada perangkat.

Maka dari itu media transmisi merupakan salah satu yang penting dalam

sistem telekomunikasi yang berperan sangat penting dalam terjadinya suatu

hubungan komunikasi. Hal inidikarenakan media pengirim dan penerima

informasi hanya ada di media transmisi maka bisa dikatakan transmisi menjadi

hal yang penting dalam menunjang sistem telekomunikasi secara keseluruhan.

Apabila sistem transmisi yang menghubungkan komunikasi tidak bergerak

atau tidak bekerja dengan maksimal, maka secanggih apapun perangkat

pendukung yag digunakan untuk menguhubungkan suatu komunikasi, perangkat

tersebut tidak akan bekerja secara utuh dan tidak dapat bekerja melaksanakan

tugasnya tanpa adanya media transmisi. Oleh karena itu, perangkat yang dijadikan

alat gerak yang menghubungkan antara pengirim dan penerima haruslah

Page 91: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

74

dipelihara dan dirawat secermat mungkin, agar pelayanan jasa telekomunikasi

yang diberikan kepada masyarakat tidak terganggu.

4.4.1. Penyebab Gangguan pada Link STO Jatinegara – STO Kebayoran

Gangguan STO Jatinegara ke STO Kebayorandengan panjang kabel serat

optik 14,5 Km dengan jumlah titk sambungan(splice)nya sebanyak 7 buah.

Diterangkan bahwa rugi-rugi yang timbul pada link ini karena adanya loss antara

titik sambungan yang melebihi perhitungan loss splice. Hal ini karena dimensi

serat optik yang kecil sehingga penyambungan antar titik sambungan yang tidak

tepat sehingga sinar dari serat optik satu ke serat optik lain tidak dapat merambat

dengan sempurna. Perhitungan loss penyambungan berdasarkan parameter standar

serat optik di PT Telkom Arnet Jatinegara sebanyak 7 buah adalah sebesar 2,1 dB

untuk link STO Jatinegara menuju STO Kebayoran.

Berdasarkan tabel 4.1 dan 4.4 maka diketahui penyebab gangguan pada

link STO Jatinegara ke STO Kebayoran terjadi akibat loss splice yang tidak

memenuhi perhitungan standar yaitu sebesar 2,1 dB, menyebabkan penurunan

daya tidak memenuhi perhitungan standar yaitu sebesar -5,29 dB . Hal ini dapat

dilihat pada nomor core 15 memiliki loss splice di titik splice 4 dan 5 dengan

total loss sebesar 7,343 dB dan daya receiver sebesar -7,845 dBm.Selanjutnya

pada nomor core 22 memliki loss splicedi titik splice 4 dan 7 dengan total loss

sebesar 6,328 dB dan daya receiver sebesar -6,561 dBm. Pada nomor 23 memilki

loss splice di titik splice 4 dan 6 dengan total loss sebesar 7,280 dB dan daya

receiver sebesar -8,095 dBm. Pada nomor core 26 memilki loss splice di titik

splice 5 dan 7 dengan total loss sebesar 6,824 dB dan daya receiver sebesar -6,651

dBm. Pada nomor 29 memiliki loss splice di titik splice 4 dengan total loss 7,288

dB dan daya receiver sebesar -7,725 dBm.

Selanjutnya, pada nomor core 33 memiliki loss splice di titik splice 2 dan

4 dengan total loss sebesar 6,810 dB dan receiver sebesar -7967 dBm.Pada nomor

core 39 memilki loss splice di titik splice 3, 6 dan 7 dengan total loss sebesar

6,803 dB dan daya receiver sebesar -7,895 dBm. Pada nomor core 47 memiliki

loss splice pada titik splice 4 dengan total loss sebesar 6,371 dB dan daya receiver

sebesar -6,495 dBm. Pada nomor core 49 memiliki loss splice pada titik losssplice

Page 92: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

75

6 dan 7 dengan total loss sebesar 6,863 dB dan daya receiver sebesar -7,817 dBm.

Pada nomor core 52 memiliki loss splice di titik splice 3 dan 7 dengan total loss

sebesar 7,947 dB dan daya receiver sebesar -8,141 dBm. Pada nomor core 53

memiliki loss splice pada titik splice 7 dengan total loss sebesar 6,696 dB dan

daya receiver sebesar -7,533 dBm. Pada nomor core 54 memiliki loss splice pada

titik splice 4 dan 5 dengan total loss sebesar 7,228 dB dan daya receiver sebesar-

8,129 dBm.Terakhir pada nomor core 63 memiliki loss splice pada titik splice 2

dengan total loss sebesar 6,858 dB dan daya receiver sebesar -8,008 dBm.

4.4.2. Penyebab Gangguan pada Link STO Jatinegara – STO Semanggi

Gangguan STO Jatinegara ke STO Semanggi dengan panjang kabel serat

optik 12,8 Km dengan jumlah titk sambungan(splice-nya) sebanyak 6 buah.

Diterangkan bahwa rugi-rugi yang timbul pada link ini karena adanya loss antara

titik sambungan yang melebihi perhitungan standar loss splice-nya. Hal ini karena

dimensi serat optik yang kecil sehingga penyambungan antar titik sambungan

yang tidak tepat sehingga sinar dari serat optik satu ke serat optik lain tidak dapat

merambat dengan sempurna. Perhitungan loss penyambungan berdasarkan

parameter standar serat optik di PT Telkom Arnet Jatinegara sebanyak 7 buah

adalah sebesar 2,1 dB untuk Link STO Jatinegara menuju STO Semanggi.

Berdasarkan tabel 4.2 dan 4.5 maka diketahui penyebab gangguan pada

link STO Jatinegara ke STO Semanggi terjadi akibat loss splice yang tidak

memenuhi perhitungan standar yaitu sebesar 1,8 dB, menyebabkan penurunan

daya tidak memenuhi standar yaitu sebesar -5,16 dB . Hal ini dapat dilihat pada

nomor core 1 memiliki loss splice di titik splice3 dengan total loss sebesar 4,824

dB dan daya receiver sebesar -6,202 dBm. Pada nomor core 2 memilki loss splice

pada titik splice 3 dengan total loss sebesar 4,335 dB dan daya receiver sebesar -

5,339 dBm. Pada nomor core 13 memilki loss splice pada titik splice 3 dan 4

dengan total loss sebesar 8,290 dB dan daya receiver sebesar -6,840 dBm. Pada

nomor core 14 memiliki loss splice pada titik splice 2 dengan total loss sebesar

5,433 dB dan daya receiver sebesar -6,567 dBm.

Selanjutnya, pada nomor core 16 memiliki loss splice pada titik splice 2

dengan total loss sebesar 7,013 dB dan daya receiver sebesar -5,563 dBm.Pada

Page 93: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

76

nomor core 20 memiliki loss splice pada titik splice 2 dengan total loss sebesar

4,118 dan daya receiver sebesar -5,568 dBm. Pada nomor core 21 memiliki loss

splice pada titik splice 2 dan 7 dengan total loss sebesar -5,229 dB dan daya

receiver sebesar -5,638 dBm. Pada nomor core 23 memiliki loss splice pada titik

splice 2 dan 4 dengan total loss sebesar 4,155 dB dan daya receiver sebesar -5,262

dBm. Pada nomor core 24 memiliki loss splice pada titik splice 2 dengan total

loss sebesar 4,672 dB dan daya receiver sebesar -5,629 dBm. Pada nomor core

32 memiliki loss splice dengan total loss sebesar 4,741 dB dan daya receiver -

5,753 dBm. Terakhir pada nomor core 35 memilki loss splice pada titik splice 3

dengan total loss sebesar 4,482 dan daya receiver-5,569 dBm.

4.4.3. Penyebab Gangguan pada Link STO Jatinegara – STO Gambir 1

Gangguan STO Jatinegara ke STO Gambir 1 dengan panjang kabel serat

optik 10,5 Km dengan jumlah titk sambungan(splice-nya) sebanyak 6 buah.

Diterangkan bahwa rugi-rugi yang timbul pada link ini karena adanya loss antara

titik sambungan yang melebihi perhitungan standar loss splice-nya. Hal ini karena

dimensi serat optik yang kecil sehingga penyambungan antar titik sambungan

yang tidak tepat sehingga sinar dari serat optik satu ke serat optik lain tidak dapat

merambat dengan sempurna.Perhitungan loss penyambungan berdasarkan

parameter standar serat optik di PT Telkom Arnet Jatinegara sebanyak 7 buah

adalah sebesar 2,1 dB untuk Link STO Jatinegara menuju STO Gambir 1.

Berdasarkan tabel 4.3 dan 4.6 maka diketahui penyebab gangguan pada

link STO Jatinegara ke STO Gambir 1 terjadi akibat loss splice yang tidak

memenuhi perhitungan standar yaitu sebesar 1,8 dB menyebabkan penurunan

daya penerimaan tidak memenuhi standar yaitu sebesar -4,66 dBm . Hal ini dapat

dilihat pada nomor core 2 memiliki splice loss pada titik splice 2 dan 4 denga total

loss sebesar 5,384 dB dan daya receiver sebesar -6,722 dBm. Pada nomor core 6

memiliki loss splice pada titik splice 2 dan 6 dengan total loss splice sebesar 6,303

dB dan daya receiver sebesar -7,383 dBm. Pada nomor core 9 memiliki loss

splice pada titik splice 2 dengan total loss splice sebesar 4,478 dB dan daya

receiver sebesar-5,248 dBm. Pada nomor core 19 memiliki loss splice pada titik

splice 3 dengan total loss splice sebesar 4,948 dB dan daya receiver sebesar -

Page 94: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

77

5,476 dBm. Pada nomor core 23 memiliki loss splice pada titik splice 3 dan 4

dengan total loss splice sebesar 6,021 dB dan daya receiver sebesar -6,633 dBm.

Selanjutnya, pada nomor core 33 memiliki loss splice pada titik splice 2

dan 3 dengan total loss splice sebesar 5,907dB dan daya receiver sebesar -6,203

dBm. Pada nomor core 34 memiliki loss splice pada titik splice 2,3 dan 4 dengan

total loss splice sebesar 6,241 dB dan daya receiver sebesar -6,893 dBm. Pada

nomor core 35 memiliki loss splice pada titik splice 2,3 dan 4 dengan total loss

splice sebesar 7,298 dB dan daya receiver sebesar -7,985dBm. Terakhir pada

nomor core 36 memiliki loss splice pada titik splice 4 dan 5 dengan total loss

splice sebesar 7,458 dB dan daya receiver sebesar -7,922 dBm.

BAB V

Page 95: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

78

KESIMPULAN

1. Dari ke 3 Link yaitu pada :

a) Link STO Jatinegara menuju STO Kebayoran dari 72 core, ada beberapa

core yang mengalami penurunan daya penerimaan dibawah perhitungan

berdasarkan standar minimal sebesar -5,62 dBm yaitu sebanyak 13core

dengan daya penerimaan mulai dari -6,561 dBm sampai dengan -8,241

dBm.

b) Untuk Link STO Jatinegara- menuju STO Semanggi dari 36 core, ada

beberapa core yang mengalami penurunan daya dibawah perhitungan

berdasarkan standar minimal sebesar -5,04dBm yaitu sebanyak 12 core

dengan daya penerimaan mulai dari -5,338 dBm sampai dengan -6,840

dBm.

c) Sedangkan untuk Link STO Jatinegara menuju STO Gambir 1 dari 36

core, ada beberapa core yang mengalami penurunan daya penerimaan di

bawah perhitungan berdasarkan standar minimal sebesar -4,8 dBm yaitu

sebanyak 10 core dengan daya penerimaan mulai dari -5,248 dBm

sampai dengan -7,985 dBm.

d) Dalam Ring 1 di Arnet Jatinegara total kerusakan pada kabel serat optik

sebanyak 35 core.

2. Berdasarkan analisis perhitungan standar dan pengukuran ketiga link yaitu

link STO Jatinegara menuju STO Kebayoran, STO Jatinegara- Semanggi dan

STO Jatinegara menuju STO Gambir 1 terjadi kerusakan akibat loss

splice(penyambungan)pada kabel yang tidak memenuhi standar dengan

berdasarkan perhitungan link power budget.

3. Berdasarkan analisis perhitungan standar dan pengukuran kabel serat optik

yang paling banyak mengalami loss splice paling banyak terdapat di STO

Jatinegara menuju STO Kebayoran sebanyak 7 core dan pada titik splice ke 4.

4. Dengan melihat hasil analisa perhitungan, maka dapat diketahui :

Page 96: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

79

a) Pada link STO Jatinegara menuju STO Kebayoran coreyang

mengalamikerusakan pada titik sambungan (splice), sehingga

mengakibatkan penurunan daya penerimaan dibawah perhitungan sebesar

-5,62 dBm. Core tersebut terdapat pada core 15,22,23,26,29,47,49,52,53,

54 dan 63

b) Pada link STO Jatinegara menuju STO Semanggi core yang mengalami

kerusakan pada titik sambungan (splice), sehingga mengakibtkan daya

penerimaan di bawah perhitungan sebesar -6,202 dBm. Core tersebut

terdapat pada core 1,2,13,14,16,20,21,23,24,26,32dan core 35.

c) Pada link STO Jatinegara menuju STO Gambir 1 core yang mengalami

kerusakan pada titik sambungan (splice), sehingga mengakibatkan

penurunandaya penerimaan di bawah perhitungan sebesar -4,8 dBm.

Core tersebut terdapat pada core 2,6,9,15,19,23,33,34, 35dan 36

d) Dalam Ring 1 di Arnet Jatinegara harus dilakukan penyambungan ulang

pada coreyang mengalami kerusakan agar tidak mengalami penurunan

daya penerimaan di bawah standar.

5. Dari ke 3 Link yaitu pada :

a) Link STO Jatinegara menuju STO Kebayoran, dari 72 core terdapat 13

core atau sekitar 18% yang mengalami kerusakan kabel. Hal ini

melebihi standar kualitas kinerja saluran transmisi jaringan di PT

Telkom, yaitu kabel serat optik tidak boleh mengalami kerusakan

melebihi 15% dari jumlah keseluruhan core yang tersedia pada tiap

kabel serat optik. Sehingga hal ini menyebabkan kinerja pada saluran

transmisi berfungsi dengan tidak baik.

b) Link STO Jatinegara menuju STO Semanggi, dari 36 core terdapat 12

core atau sekitar 33% yang mengalami kerusakan kabel. Hal ini

melebihi standar kualitas kinerja saluran transmisi jaringan di PT

Telkom, yaitu kabel serat optik tidak boleh mengalami kerusakan

melebihi 15% dari jumlah keseluruhan core yang tersedia pada tiap

kabel serat optik. Sehingga hal ini menyebabkan kinerja pada saluran

transmisi di link ini berfungsi dengan sangat tidak baik.

Page 97: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

80

c) Link STO Jatinegera menuju STO Gambir 1, dari 36 core terdapat 10

core atau sekitar 28% yang mengalami kerusakan kabel. Hal ini

melebihi standar kualitas kinerja saluran transmisi jaringan di PT

Telkom, yaitu kabel serat optik tidak boleh mengalami kerusakan

melebihi 15% dari jumlah keseluruhan core yang tersedia pada tiap

kabel serat optik. Sehingga hal ini menyebabkan kinerja pada saluran

transmisi di link ini berfungsi dengan sangat tidak baik.

d) Dari ketiga link pada Ring 1 Arnet Jatinegara harus dilakukan

perbaikan penyambungan kembali.

Page 98: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 99: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The AQ7260 OTDR covers a wide range of applicationsfor the installation and servicing of optical networks,with a variety of OTDR modules and optional units

Speed, Ease-of-useIncreased Efficiency of Optical

Network Testing

... and subscribe to “Newswave,”our free e-mail newsletter

Printer/FDD Unit

AQ7932 OTDR Emulation Software

Soft carrying case

Option

Ordering Information

Model namePrinterFDDEnvironmentalcondition

Operating temperatureStorage temperatureHumidity

576 dots/line, Thermal printer, Record paper: 80mm width

5 to 40 degree-20 to 60 degree

85% or less (no condensation)

Printer/FDD Unit for AQ7260

3.5inch FD, 2HD

Printer Unit for AQ7260

Model name

Packing item

Soft carrying case for AQ7260

AQ7260, AC Adapter, Printer/FDD Unit, Print roll, AC power cable, Battery pack, Instruction Manual

Model name813920300

Suffix code

-ESTD-KSTD-CSTD

-020M-STD

/PKA/CE

DescriptionsAQ7260 OTDRStandard software in EnglishStandard software in KoreanStandard software in ChineseMemory capacity : 20MBStandard Spec (liquid crystal)Pack with main frame when deliveringWith CE markings

Model name813920301

Suffix code

-A-C-F-G-H-J

/PKA

DescriptionsAC adapter for AQ7260 OTDRJIS standard (2P)UL and CSA standard (UL2P)VDE standard (CEE-C2)SAA standard (AS2P)BS standard (BS546 2P)BS standard (BS2P)Pack with main frame when delivering

Model name813920302

955-892900215

Suffix code

-N-P

/Y/CE

DescriptionsPrinter/FDD unit for AQ7260Normal Standard (Printer and Floppy Disk)Printer onlyYokogawa name plateWith CE markingsRolling paper (TP-312C) Unit of sales : 10 rolls

Model name813920305

Suffix code DescriptionsSoft carrying case for AQ7260

Model name813920306

Suffix code

/PKA

DescriptionsBattery pack (spare) for AQ7260Pack with main frame when delivering

Model name813920303

813920304

735010

735011

Suffix code-STD01

/PKA/PKD

/CE-STD01

/PKA/PKD

/CE-STD00

/PKA/PKD

/CE-STD00

/PKA/PKD

/CE

DescriptionsAQ7264 SMF modulePack with main frame when deliveringPack with module when deliveringWith CE markingsAQ7261 SMF modulePack with main frame when deliveringPack with module when deliveringWith CE markingsAQ7265 SMF modulePack with main frame when deliveringPack with module when deliveringWith CE markingsAQ7269 MMF/SMF modulePack with main frame when deliveringPack with module when deliveringWith CE markings

Model name813917321

Suffix code

-FCC-SCC-STC-DIN

/PKA/PKD

DescriptionsAQ9441 (***) Universal AdapterFC connectorSC connectorST connectorDIN connectorPack with main frame when deliveringPack with module when delivering

Model name735070

Suffix code

-EN-CH-KO

DescriptionsAQ7932 OTDR Emulation SoftwareEnglish installer, English display, for 813920300-ESTDEnglish installer, Chinese display, for 813920300-CSTDEnglish installer, Hangul display, for 813920300-KSTD

Two adapters (AQ9441) are necessary for AQ7269 MMF/SMF modules.

NOTICE Remarks : Export condition is subject to Japanese governmental approval.

Specifications are subject to change without notice.

Model nameFile formatBatch file conversionPrint out formatTrace functionAnalysis functionEvent edit function

Output format

Function

Report Wizard

PC

OSExcel

functions

Operating Environ-ment

.trb (AQ7250), .trd (AQ7260), .sor (Bellcore GR-196-CORE), .sor (Telcordia SR-4731)For file format and labelAQ7260 image output, color outputUp to 8 traces are sown same screen, switchable one trace or multi trace displayAuto event search, two traces analysis (Subtract analysis, 2-way analysis)Insert, delete and move events

Print out, CSV file, XLS file

CD-ROM

AQ7932 OTDR Emulation Software

Supply media

Layout setting (with image viewer), Item setting and edit (Item names are editable), Data selection function, Master setting function (Event edit, Total loss, Trace), Table edit and preview (Table and Trace)

PC/AT compatible, with CD-ROM drive, CPU clock:Requirement by OS, Display : 1024 768 dots or more, Memory : 128MB or more, Hard disk : Free area 20MB or moreMicrosoft Windows XP, Microsoft Windows 2000Microsoft Excel 2000 or later (When using the XLS file output function.)

Subject to change without notice.[Ed : 02/b] Copyright ©2005

Printed in Japan, 602(KP)

YOKOGAWA ELECTRIC CORPORATIONCommunication & Measurement Business Headquarters /Phone: (81)-422-52-6768, Fax: (81)-422-52-6624E-mail: [email protected] CORPORATION OF AMERICA Phone: (1)-770-253-7000, Fax: (1)-770-251-6427YOKOGAWA EUROPE B.V. Phone: (31)-33-4641858, Fax: (31)-33-4641859YOKOGAWA ENGINEERING ASIA PTE. LTD. Phone: (65)-62419933, Fax: (65)-62412606 MS-16E

Bulletin AQ7260-01E

Sampling resolution : min. 5cm Sampling points : max. 60,000 8.4 inch TFT-LCD color display for easy viewing Large internal memory : 20MB USB ports for connectivity and data storage Compact and light weight : approx. 3kg A variety of optical modules

• AQ7261 SMF module (cost performance model)• AQ7264 SMF module (standard model)• AQ7265 SMF module (high dynamic range model)• AQ7269 MMF/SMF module (both SMF and MMF model)

OTDR AQ7260

NewNewNewNew

Page 100: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Simultaneous Display of Trace and Event Table

Trace Fix Function

By combining Auto Set and Auto Save functions, you carry out achain of processes automatically such as the following:

After performing an Auto Event Search, the trace and eventtable are simultaneously displayed on the screen. Alternatively,you can choose to display just a trace or event table on thescreen. In the event table, symbols enable you to identify thetypes of events.

Trace

Event list Type of event

Auto Mode Measurement

Automatically detects the conditions of the fiber being measured and automatically sets the optimum measurement condition.

Starts measuring the average automatically when the measurement conditions are set.

Automatically detects the reflection values, positioning (distance) and the loss incurred when the threshold value exceeds the preset values.

Stores the measurement results automatically Into the specified memory.

Set measurementconditions

Measurementprocedure

Start measurement

Search event

Save data

Can quickly and easily compare traces withthe trace fix function. This is a convenientfunction to observe the characteristic differ-ences in multi-core fibers by core, and quicklycheck where the core was bended, and theloss characteristics.

Multi Wavelength Continuous Measurement is afunction that allows you to switch the wavelengthbeing measured while keeping the samemeasurement conditions. This is convenientwhen you need to measure two wavelengths in asingle fiber.

Multi Wavelength Continuous Measurement

The AQ7932 OTDR Emulation Software can be used to create and edit waveform analyses and reports (total tables and waveformgraphs) based on data acquired by the AQ7260 OTDR. And this software can be run on a Windows-based PC.

AQ7932 supports the AQ7260 (TRD) and Telcordia (SOR)formats.You can check file information before opening the file by thePreview Function.With the output layout display, you can check the contents ofreports as you create them.

Report data (total data and trace)can be output to a file in Excel(XLS) format.

AQ7932 OTDR Emulation software (option)

Select the wavelength to be measured

OTDR AQ7260

7

8

9

1

3

4

5 6

2

Specifications

Appearance (AQ7260 main frame)

AQ7260 OTDR main frame

1 Main frame2 8.4 inch TFT-LCD Color display3 Slot for Optional unit4 DC in5 Power switch6 PCMCIA slot7 Optical connector8 USB ports9 Battery pack

Optical modules

1) Liquid crystal display may include few defective pixels (within 0.002% with respect to the total number of pixels including RGB).There may be few pixels on the liquid crystal display that do not emit all the time or remains ON all the time. Note that these are not malfunctions.

Full-scaleShiftReadout resolutionSample data countGroup refractive index settingDistance measurementScaleShiftRead Resolution

Loss measurement

Internal MemoryPCMCIAUSB (Host Interface)Printer / FDDAC Adapter

Battery

Operating TemperatureStorage TemperatureRelative humidity

Display 1)Horizontal axis

Vertical axis

Return-loss measurement function

Memory

Interface

Power requirement

Environmentalconditions

Dimensions and mass

Accessories

8.4 inch color TFT (640 480 dots)25m, 50m, 100m, 250m, 500m, 1km, 2km, 2.5km, 5km, 10km, 20km, 40km, 80km, 160km, 240km, 320km, 640km (depend on the optical unit)0 to distance rangemin. 1cmmax. 60,000 points1.00000 to 1.99999 in 0.00001 stepsDisplays the relative one-way distance between any two given points, in eight digits0.2dB/div, 0.5dB/div, 1dB/div, 2dB/div, 5dB/div, 7.5dB/div0 to 68dBMin 0.001dBDisplays one-way losses in steps of 0.001dB to a maximum of 5 digitsDisplays the relative one-way loss, loss per unit length, and splice loss between any two given points on the waveform.Return loss at mechanical connectors can be measuredTotal return loss of a fiber cable or between any two points can be measured20MBFor stored measurement waveforms and measurement conditions. (A PCMCIA memory card must be purchased separately.)2 ports, conforms to USB Rev. 1.0, USB memory (Supports memory without security functions.), keyboard, printerCan mount cable less on the back of the optical module cover. (Must purchase an optional unit separately.)AC100 to 240V, max. 60W (When using optional printer unit during charging battery)Li-Ion, Operating time : approx. 6 hours (measurement for 30 seconds in every 3 minutes, using AQ7261 without any optional units, in Power Save Mode)charging time : < 5 hours (Room temperature is 23 °C when the power is OFF.)-10 to +50°C (During charging : +5 to +35°C)-20 to +60°C95% or less (no condensation)Approx. 299 (W) 225 (H) 62 (D) mm (Has no projections)Approx. 3kg (Included optical modules. The weight is 3.3kg when AQ7269 is mounted.)Battery Pack, Shoulder Strap and User’s Manual

AQ7261 SMF Module1310/1550 +/-25

2 typ.15/20 typ.34/32 9)

35/33 typ.

———

AQ7264 SMF Module

2 typ.7/8 typ.40/38 9)

42/40 typ.

1310/1550-3 +/- 2+/- 0.1

AQ7265 SMF Module

min. 5cmmax. 60,000 points

+/- 1m

+/- 1 sampling resolution2 typ.

7/8 typ.43/41 9)

45/43 typ.+/-0.05 dB/dB 13)

1310/1550-3 +/- 2+/- 0.1

-20 to +60°C

850/1300 +/- 30GI (62.5/125µ, 50/125µ)1, 2, 5, 10, 20, 40, 80 7)

10n, 20n, 50n, 100n, 200n, 500n, 1µ8)

2 typ. 10)

7/8 typ. 10) 11)

22.5/24 10) 12)

———

1310/1550 +/-25SM (ITU-T G.652)

2, 5, 10, 20, 40, 80, 160, 24010n, 20n, 50n, 100n, 200n,

500n, 1µ, 4µ, 10µ, 20µ

2 typ.7/8 typ.

34/32 9)

———

Model nameMeasured wavelength (nm)Measured fiberDistance range (km)

Pulse width (sec) 5)

Distance sampling resolutionDistance sampling pointsDistancemeasurementaccuracy (m)

Dead zone (m)

Dynamic range (dB) SNR=1, for 3 minutes

Loss measurement accuracyStabilized LightSource

Optical connectorEnvironmentalcondition

Wavelength (nm)Max. output (dBm)Stability (dB) 4)

Operating TemperatureStorage TemperatureHumidity

Offset errorScale errorSampling errorEvent 1)

Attenuation 2)

1310/1550 +/- 20AQ7269 MMF/SMF Module

SM (ITU-T G.652)2, 5, 10, 20, 40, 80, 160, 240, 320, 640 6)

10n, 20n, 50n, 100n, 200n, 500n, 1µ, 4µ, 10µ, 20µ, 50µ 3)

Measured distance 2 10-5

Optional AQ9441(*) Universal Adapter 14)

95% or less (no condensation)

-10 to +50°C 0 to +40°C

1) Distance width between the event peak point, where the return loss is 40 dB or higher (event is notsaturated), and the point where the level is 1.5 dB smaller than the event peak.At pulse width 10ns.

2) Distance width at points where the optical connector’s return loss is 45 dB or higher and the backscatter level is within +/- 0.5 dB of the normal level. At pulse width 10ns.

3) 50µs is only 1550nm of AQ7264/AQ7265.4) 5minutes measurement at constant temperature.5) 1µs can be set at a distance range of over 10km, and 4µs can be set at a distance range of over

40km.6) When measuring 1310nm, the maximum is 320km. When measuring 1550nm, the maximum is

640km. (AQ7264/AQ7265 only)

7) 40km, 80km is only 1300nm.8) 500ns, 1µs is only 1300nm.9) At pulse width 20µs and filter ON.10)At GI 62.5/125µm11)Distance width at points where the optical connector’s return loss is 40 dB or higher and the back

scatter level is within +/- 0.5 dB of the normal level. At pulse width 10ns.12)At pulse width 200ns (850nm), 1µs (1300nm) and filter ON.13)For AQ7269 MMF at 62.5/125µm14)* mark is connector type. Selectable connector type. (FC, SC, ST, DIN)

Laser Safety Information* These laser sources are classified IEC60825-1 : Class 1M* The laser products comply with 21CFR1040.10 except for deviations pursuant to Laser Notice No.50, dated May 27 2001* Viewing the laser output with certain optical instruments such as loupe, magnifying glass or telescope within 100mm may cause damage to the eyes.

Page 101: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Simultaneous Display of Trace and Event Table

Trace Fix Function

By combining Auto Set and Auto Save functions, you carry out achain of processes automatically such as the following:

After performing an Auto Event Search, the trace and eventtable are simultaneously displayed on the screen. Alternatively,you can choose to display just a trace or event table on thescreen. In the event table, symbols enable you to identify thetypes of events.

Trace

Event list Type of event

Auto Mode Measurement

Automatically detects the conditions of the fiber being measured and automatically sets the optimum measurement condition.

Starts measuring the average automatically when the measurement conditions are set.

Automatically detects the reflection values, positioning (distance) and the loss incurred when the threshold value exceeds the preset values.

Stores the measurement results automatically Into the specified memory.

Set measurementconditions

Measurementprocedure

Start measurement

Search event

Save data

Can quickly and easily compare traces withthe trace fix function. This is a convenientfunction to observe the characteristic differ-ences in multi-core fibers by core, and quicklycheck where the core was bended, and theloss characteristics.

Multi Wavelength Continuous Measurement is afunction that allows you to switch the wavelengthbeing measured while keeping the samemeasurement conditions. This is convenientwhen you need to measure two wavelengths in asingle fiber.

Multi Wavelength Continuous Measurement

The AQ7932 OTDR Emulation Software can be used to create and edit waveform analyses and reports (total tables and waveformgraphs) based on data acquired by the AQ7260 OTDR. And this software can be run on a Windows-based PC.

AQ7932 supports the AQ7260 (TRD) and Telcordia (SOR)formats.You can check file information before opening the file by thePreview Function.With the output layout display, you can check the contents ofreports as you create them.

Report data (total data and trace)can be output to a file in Excel(XLS) format.

AQ7932 OTDR Emulation software (option)

Select the wavelength to be measured

OTDR AQ7260

7

8

9

1

3

4

5 6

2

Specifications

Appearance (AQ7260 main frame)

AQ7260 OTDR main frame

1 Main frame2 8.4 inch TFT-LCD Color display3 Slot for Optional unit4 DC in5 Power switch6 PCMCIA slot7 Optical connector8 USB ports9 Battery pack

Optical modules

1) Liquid crystal display may include few defective pixels (within 0.002% with respect to the total number of pixels including RGB).There may be few pixels on the liquid crystal display that do not emit all the time or remains ON all the time. Note that these are not malfunctions.

Full-scaleShiftReadout resolutionSample data countGroup refractive index settingDistance measurementScaleShiftRead Resolution

Loss measurement

Internal MemoryPCMCIAUSB (Host Interface)Printer / FDDAC Adapter

Battery

Operating TemperatureStorage TemperatureRelative humidity

Display 1)Horizontal axis

Vertical axis

Return-loss measurement function

Memory

Interface

Power requirement

Environmentalconditions

Dimensions and mass

Accessories

8.4 inch color TFT (640 480 dots)25m, 50m, 100m, 250m, 500m, 1km, 2km, 2.5km, 5km, 10km, 20km, 40km, 80km, 160km, 240km, 320km, 640km (depend on the optical unit)0 to distance rangemin. 1cmmax. 60,000 points1.00000 to 1.99999 in 0.00001 stepsDisplays the relative one-way distance between any two given points, in eight digits0.2dB/div, 0.5dB/div, 1dB/div, 2dB/div, 5dB/div, 7.5dB/div0 to 68dBMin 0.001dBDisplays one-way losses in steps of 0.001dB to a maximum of 5 digitsDisplays the relative one-way loss, loss per unit length, and splice loss between any two given points on the waveform.Return loss at mechanical connectors can be measuredTotal return loss of a fiber cable or between any two points can be measured20MBFor stored measurement waveforms and measurement conditions. (A PCMCIA memory card must be purchased separately.)2 ports, conforms to USB Rev. 1.0, USB memory (Supports memory without security functions.), keyboard, printerCan mount cable less on the back of the optical module cover. (Must purchase an optional unit separately.)AC100 to 240V, max. 60W (When using optional printer unit during charging battery)Li-Ion, Operating time : approx. 6 hours (measurement for 30 seconds in every 3 minutes, using AQ7261 without any optional units, in Power Save Mode)charging time : < 5 hours (Room temperature is 23 °C when the power is OFF.)-10 to +50°C (During charging : +5 to +35°C)-20 to +60°C95% or less (no condensation)Approx. 299 (W) 225 (H) 62 (D) mm (Has no projections)Approx. 3kg (Included optical modules. The weight is 3.3kg when AQ7269 is mounted.)Battery Pack, Shoulder Strap and User’s Manual

AQ7261 SMF Module1310/1550 +/-25

2 typ.15/20 typ.34/32 9)

35/33 typ.

———

AQ7264 SMF Module

2 typ.7/8 typ.40/38 9)

42/40 typ.

1310/1550-3 +/- 2+/- 0.1

AQ7265 SMF Module

min. 5cmmax. 60,000 points

+/- 1m

+/- 1 sampling resolution2 typ.

7/8 typ.43/41 9)

45/43 typ.+/-0.05 dB/dB 13)

1310/1550-3 +/- 2+/- 0.1

-20 to +60°C

850/1300 +/- 30GI (62.5/125µ, 50/125µ)1, 2, 5, 10, 20, 40, 80 7)

10n, 20n, 50n, 100n, 200n, 500n, 1µ8)

2 typ. 10)

7/8 typ. 10) 11)

22.5/24 10) 12)

———

1310/1550 +/-25SM (ITU-T G.652)

2, 5, 10, 20, 40, 80, 160, 24010n, 20n, 50n, 100n, 200n,

500n, 1µ, 4µ, 10µ, 20µ

2 typ.7/8 typ.

34/32 9)

———

Model nameMeasured wavelength (nm)Measured fiberDistance range (km)

Pulse width (sec) 5)

Distance sampling resolutionDistance sampling pointsDistancemeasurementaccuracy (m)

Dead zone (m)

Dynamic range (dB) SNR=1, for 3 minutes

Loss measurement accuracyStabilized LightSource

Optical connectorEnvironmentalcondition

Wavelength (nm)Max. output (dBm)Stability (dB) 4)

Operating TemperatureStorage TemperatureHumidity

Offset errorScale errorSampling errorEvent 1)

Attenuation 2)

1310/1550 +/- 20AQ7269 MMF/SMF Module

SM (ITU-T G.652)2, 5, 10, 20, 40, 80, 160, 240, 320, 640 6)

10n, 20n, 50n, 100n, 200n, 500n, 1µ, 4µ, 10µ, 20µ, 50µ 3)

Measured distance 2 10-5

Optional AQ9441(*) Universal Adapter 14)

95% or less (no condensation)

-10 to +50°C 0 to +40°C

1) Distance width between the event peak point, where the return loss is 40 dB or higher (event is notsaturated), and the point where the level is 1.5 dB smaller than the event peak.At pulse width 10ns.

2) Distance width at points where the optical connector’s return loss is 45 dB or higher and the backscatter level is within +/- 0.5 dB of the normal level. At pulse width 10ns.

3) 50µs is only 1550nm of AQ7264/AQ7265.4) 5minutes measurement at constant temperature.5) 1µs can be set at a distance range of over 10km, and 4µs can be set at a distance range of over

40km.6) When measuring 1310nm, the maximum is 320km. When measuring 1550nm, the maximum is

640km. (AQ7264/AQ7265 only)

7) 40km, 80km is only 1300nm.8) 500ns, 1µs is only 1300nm.9) At pulse width 20µs and filter ON.10)At GI 62.5/125µm11)Distance width at points where the optical connector’s return loss is 40 dB or higher and the back

scatter level is within +/- 0.5 dB of the normal level. At pulse width 10ns.12)At pulse width 200ns (850nm), 1µs (1300nm) and filter ON.13)For AQ7269 MMF at 62.5/125µm14)* mark is connector type. Selectable connector type. (FC, SC, ST, DIN)

Laser Safety Information* These laser sources are classified IEC60825-1 : Class 1M* The laser products comply with 21CFR1040.10 except for deviations pursuant to Laser Notice No.50, dated May 27 2001* Viewing the laser output with certain optical instruments such as loupe, magnifying glass or telescope within 100mm may cause damage to the eyes.

Page 102: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The AQ7260 OTDR covers a wide range of applicationsfor the installation and servicing of optical networks,with a variety of OTDR modules and optional units

Speed, Ease-of-useIncreased Efficiency of Optical

Network Testing

... and subscribe to “Newswave,”our free e-mail newsletter

Printer/FDD Unit

AQ7932 OTDR Emulation Software

Soft carrying case

Option

Ordering Information

Model namePrinterFDDEnvironmentalcondition

Operating temperatureStorage temperatureHumidity

576 dots/line, Thermal printer, Record paper: 80mm width

5 to 40 degree-20 to 60 degree

85% or less (no condensation)

Printer/FDD Unit for AQ7260

3.5inch FD, 2HD

Printer Unit for AQ7260

Model name

Packing item

Soft carrying case for AQ7260

AQ7260, AC Adapter, Printer/FDD Unit, Print roll, AC power cable, Battery pack, Instruction Manual

Model name813920300

Suffix code

-ESTD-KSTD-CSTD

-020M-STD

/PKA/CE

DescriptionsAQ7260 OTDRStandard software in EnglishStandard software in KoreanStandard software in ChineseMemory capacity : 20MBStandard Spec (liquid crystal)Pack with main frame when deliveringWith CE markings

Model name813920301

Suffix code

-A-C-F-G-H-J

/PKA

DescriptionsAC adapter for AQ7260 OTDRJIS standard (2P)UL and CSA standard (UL2P)VDE standard (CEE-C2)SAA standard (AS2P)BS standard (BS546 2P)BS standard (BS2P)Pack with main frame when delivering

Model name813920302

955-892900215

Suffix code

-N-P

/Y/CE

DescriptionsPrinter/FDD unit for AQ7260Normal Standard (Printer and Floppy Disk)Printer onlyYokogawa name plateWith CE markingsRolling paper (TP-312C) Unit of sales : 10 rolls

Model name813920305

Suffix code DescriptionsSoft carrying case for AQ7260

Model name813920306

Suffix code

/PKA

DescriptionsBattery pack (spare) for AQ7260Pack with main frame when delivering

Model name813920303

813920304

735010

735011

Suffix code-STD01

/PKA/PKD

/CE-STD01

/PKA/PKD

/CE-STD00

/PKA/PKD

/CE-STD00

/PKA/PKD

/CE

DescriptionsAQ7264 SMF modulePack with main frame when deliveringPack with module when deliveringWith CE markingsAQ7261 SMF modulePack with main frame when deliveringPack with module when deliveringWith CE markingsAQ7265 SMF modulePack with main frame when deliveringPack with module when deliveringWith CE markingsAQ7269 MMF/SMF modulePack with main frame when deliveringPack with module when deliveringWith CE markings

Model name813917321

Suffix code

-FCC-SCC-STC-DIN

/PKA/PKD

DescriptionsAQ9441 (***) Universal AdapterFC connectorSC connectorST connectorDIN connectorPack with main frame when deliveringPack with module when delivering

Model name735070

Suffix code

-EN-CH-KO

DescriptionsAQ7932 OTDR Emulation SoftwareEnglish installer, English display, for 813920300-ESTDEnglish installer, Chinese display, for 813920300-CSTDEnglish installer, Hangul display, for 813920300-KSTD

Two adapters (AQ9441) are necessary for AQ7269 MMF/SMF modules.

NOTICE Remarks : Export condition is subject to Japanese governmental approval.

Specifications are subject to change without notice.

Model nameFile formatBatch file conversionPrint out formatTrace functionAnalysis functionEvent edit function

Output format

Function

Report Wizard

PC

OSExcel

functions

Operating Environ-ment

.trb (AQ7250), .trd (AQ7260), .sor (Bellcore GR-196-CORE), .sor (Telcordia SR-4731)For file format and labelAQ7260 image output, color outputUp to 8 traces are sown same screen, switchable one trace or multi trace displayAuto event search, two traces analysis (Subtract analysis, 2-way analysis)Insert, delete and move events

Print out, CSV file, XLS file

CD-ROM

AQ7932 OTDR Emulation Software

Supply media

Layout setting (with image viewer), Item setting and edit (Item names are editable), Data selection function, Master setting function (Event edit, Total loss, Trace), Table edit and preview (Table and Trace)

PC/AT compatible, with CD-ROM drive, CPU clock:Requirement by OS, Display : 1024 768 dots or more, Memory : 128MB or more, Hard disk : Free area 20MB or moreMicrosoft Windows XP, Microsoft Windows 2000Microsoft Excel 2000 or later (When using the XLS file output function.)

Subject to change without notice.[Ed : 02/b] Copyright ©2005

Printed in Japan, 602(KP)

YOKOGAWA ELECTRIC CORPORATIONCommunication & Measurement Business Headquarters /Phone: (81)-422-52-6768, Fax: (81)-422-52-6624E-mail: [email protected] CORPORATION OF AMERICA Phone: (1)-770-253-7000, Fax: (1)-770-251-6427YOKOGAWA EUROPE B.V. Phone: (31)-33-4641858, Fax: (31)-33-4641859YOKOGAWA ENGINEERING ASIA PTE. LTD. Phone: (65)-62419933, Fax: (65)-62412606 MS-16E

Bulletin AQ7260-01E

Sampling resolution : min. 5cm Sampling points : max. 60,000 8.4 inch TFT-LCD color display for easy viewing Large internal memory : 20MB USB ports for connectivity and data storage Compact and light weight : approx. 3kg A variety of optical modules

• AQ7261 SMF module (cost performance model)• AQ7264 SMF module (standard model)• AQ7265 SMF module (high dynamic range model)• AQ7269 MMF/SMF module (both SMF and MMF model)

OTDR AQ7260

NewNewNewNew

Page 103: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

G 655 B SINGLEMODE OPTICAL FIBRES

Specifications: UIT-T G. 655 B4, CEI 60793-2-50 type B4 series

Silec Cable REFERENCE: G 655 Z01

G 655 Z01 singlemode optical fibres are non zero dispersion fibres (NZ-DS). They are dedicated for very high bit rate transmission on very long distances, using wavelength dense multiplexing (WDM). These fibres present the following advantages : - usable at 1310 nm wavelength and optimized for high bit rate transmission in C (1530 – 1565 nm) et L

(1565 – 1625 nm) bands, - optimized dispersion (2.6 up to 6.0 ps/nm.km between 1530 and 1565 nm – 4.0 up to 8.9 ps/nm.km

between 1565 and 1625 nm) giving limited non-linear effects, limitation of the number of dispersion compensating equipments and favourizing low-cost evolution of networks towards very-very high bit rate transmission,

- dispersion slope lower if compared with large effictive area fibres, - low and uniform attenuation, - acrylate double coating for long term perenniality of the optical fibres, - low dispersion and low PMD favourizing the evolution of networks, especially increasing of bit rate

transmission up to 10 and 40 Gbit/s, - optimized geometrical characteristics for low jointing loss (splicing), - low bending sensivity.

Their characteristics are better than thoose requir ed by UIT-T G 655 (see table hereunder).

Attenuation Attenuation @1550 nm < 0.22 dB/km (0.20 dB/km typical)* Attenuation @ 1625 nm < 0.24 dB/km (0.21 dB/km typical)* Attenuation @1310 nm < 0.40 dB/km (0.35 dB/km typical)* Attenuation @1383 nm < 0.40 dB/km (0.35 dB/km typical)* Attenuation slope regularity @ 1550 nm Local discontinuity < 0.05 dB Bending sensivity

Bending diameter, mm Number of turns Attenuation

32 1 < 0.5 dB @ 1550 & 1625 nm Bending loss

60 100 < 0.05 dB @ 1550 & 1625 nm PMD

Polarization mode dispersion (PMD) – bare fibre Average < 0.04 ps/km1/2

Maxi individual < 0.10 ps/km1/2 Polarization mode dispersion (PMD) – fibre in cable < 0.2 ps/km1/2 Dispersion Chromatic dispersion between 1530 and 1565 nm 2.6 up to 6.0 ps/nm.km Chromatic dispersion between 1565 and 1625 nm 4.0 up to 8.9 ps/nm.km Chromatic dispersion @ 1310 nm -8.0 ps/nm.km @ 1310 nm typical Zero dispersion slope @ 1550 nm < 0.05 ps/nm2.km Mode field diameter Mode field diameter @ 1550 nm 8.4 +/- 0.6 µm Geometrical characteristics Cladding diameter 125.0 +/- 0.7 µm Cladding non circularity < 0.7 % Core/cladding concentricity error < 0.5 µm Fibre curl > 4.0 m Coating diameter 245 +/- 5 µm Coating concentricity error < 10.0 µm

* : typical value in cable

No reproduction without the written consent of Sile c Cable – Silec Cable reserves the right to change t he specifications for improvement without notice. S ilec trademark is a registred trademark.

Telecom Cables / Commercial Phone : +33 1 41 98 09 21 - Fax +33 1 49 98 09 29 - Email : [email protected]

Head office : Rue de Varennes Prolongée - 77876 MONTEREAU CEDEX – France Phone : + 33 1 60 57 30 00 Fax : + 33 1 60 57 30 15 www.sileccable.com SAS au capital de 60 037 000 € - 484 920 194 RCS Montereau

Page 104: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

G 655 B SINGLEMODE OPTICAL FIBRES

Mechanical characteristics Proof test (elongation = 1 %) > 0.7 GN/m2 Dynamic tensile force > 3.8 GPa Coating stripping force 1.3 up to 8.9 N Influence of environment

Attenuation change between –60 and +85 °C < 0.05 dB/km @ 1310, 1550 & 1625 nm

Attenuation change between –10 et +85 °C with 98 % relative humidity < 0.05 dB/km @ 1310, 1550 & 1625 nm

Attenuation change in water @ +23 +/- 2 °C < 0.05 dB/km @ 1310, 1550 & 1625 nm

Attenuation change after ageing @ +85 +/- 2 °C < 0.05 dB/km @ 1310, 1550 & 1625 nm

Typical values Refractive index @ 1310 nm 1.471 Refractive index @ 1550 and 1625 nm 1.470 Cut off wavelength (in cable) < 1260 nm Dynamic fatigue parameter (nd) 20

Note :

- Silec Cable manufacturing processes have no incidence on the optical fibre characteristics described in the precedent table.

No reproduction without the written consent of Sile c Cable – Silec Cable reserves the right to change t he specifications for improvement without notice. S ilec trademark is a registred trademark.

Telecom Cables / Commercial Phone : +33 1 41 98 09 21 - Fax +33 1 49 98 09 29 - Email : [email protected]

Head office : Rue de Varennes Prolongée - 77876 MONTEREAU CEDEX – France Phone : + 33 1 60 57 30 00 Fax : + 33 1 60 57 30 15 www.sileccable.com SAS au capital de 60 037 000 € - 484 920 194 RCS Montereau

Page 105: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

G 652 B STANDARD SINGLEMODE OPTICAL FIBRES

Specifications:UIT-T G. 652 B,CEI 60793-2-50 type B1.1 seriesFRANCE TELECOM ST 7443

Silec Cable REFERENCE: G 652 B

G 652 A singlemode optical fibres used by Silec Cable present the following advantages :- low and uniform attenuation,- acrylate double coating for long term perenniality of the optical fibres,- low dispersion and very low PMD favourizing the evolution of networks, especially increasing of bit rate

transmission,- compatibility with other existing G 652 optical fibres,- optimized geometrical characteristics for low jointing (splicing) attenuation loss,- low bending sensivity.

Their characteristics are better than thoose required by UIT-T G 652 A specification (see tablehereunder).

AttenuationAttenuation @ 1310 nm < 0.35 dB/km *Attenuation @ 1550 nm < 0.21 dB/km *Attenuation @ 1625 nm < 0.24 dB/km

Attenuation between 1285 and 1330 nm Change versus attenuation @1310 nm < 0.03 dB/km

Attenuation between 1525 and 1575 nm Change versus attenuation @1550 nm < 0.03 dB/km

Attenuation slope regularity @ 1310 and 1550 nm Local discontinuity < 0.05 dBBending sensivity

Bendingdiameter, mm Number of turns Attenuation

32 1 < 0.5 dB @ 1550 nmBending loss

60 100 < 0.05 dB @1550 nmPMD

Polarization mode dispersion (PMD) – bare fibre Average < 0.06 ps/km1/2

Maxi individual < 0.1 ps/km1/2

Polarization mode dispersion (PMD) – fibre in cable < 0.2 ps/km1/2

Cut off wavelengthCut off wavelength (in cable) < 1260 nmDispersionChromatic dispersion between 1285 and 1330 nm < 3.5 ps/nm.kmChromatic dispersion @ 1550 nm < 18 ps/nm.kmZero dispersion wavelength 1300 up to 1324 nmZero dispersion slope < 0.092 ps/nm2.kmMode field diameterMode field diameter @ 1310 nm 9.1 +/- 0.5 µmMode field diameter @ 1550 nm 10.4 +/- 1 µmGeometrical characteristicsCladding diameter 125.0 +/- 1 µmCladding non circularity < 1 %Core/cladding concentricity error < 0.6 µmFibre curl > 4.0 mCoating diameter 245 +/- 5 µmCoating concentricity error < 10.0 µm

* : typical value in cable

No reproduction without the written consent of Sile c Cable – Silec Cable reserves the right to change the specifications for improvement without notice. Silec trademark is a registred trademark.

Telecom Cables Department / CommercialPhone : +33 1 41 98 09 21 - Fax +33 1 49 98 09 29 - Email : [email protected]

Head office : Rue de Varennes Prolongée - 77876 MONTEREAU CEDEX – FrancePhone : + 33 1 60 57 30 00 Fax : + 33 1 60 57 30 15 www.sileccable.comSAS au capital de 60 037 000 € - 484 920 194 RCS Montereau

Page 106: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

G 652 B STANDARD SINGLEMODE OPTICAL FIBRES

Mechanical characteristicsProof test (elongation = 1 %) > 0.7 GN/m2

Dynamic tensile force > 4.0 GPaCoating stripping force 1.2 up to 3 NInfluence of environmentAttenuation change between –60 and +85 °C < 0.05 dB /km @ 1310 & 1550 nmAttenuation change between –10 et +85 °C with 98 % relative humidity < 0.05 dB/km @ 1310 & 1550 nmAttenuation change in water @ +23 +/- 2 °C < 0.05 dB /km @ 1310 & 1550 nmAttenuation change after ageing @ +85 +/- 2 °C < 0.0 5 dB/km @ 1310 & 1550 nmTypical valuesRefractive index @ 1310 nm 1.4690Refractive index @ 1550 nm 1.4695Relative difference of refractive index between core and cladding 0.34 %Zero dispersion wavelength 1312 nmZero dispersion slope 0.085 ps/nm2.kmDynamic fatigue parameter (nd) 20

Notes :

- Silec Cable manufacturing processes have no incidence on the optical fibre characteristics described inthe precedent table.

- Upon request, Silec Cable can offer « low water peak » G 652 D singlemode optical fibres. These fibresare similar to G 652 B fibres excepted their low attenuation around 1383 nm (« water peak ») giving acomplementary possibility of wavelength multiplexing between 1310 and 1550 nm.

No reproduction without the written consent of Sile c Cable – Silec Cable reserves the right to change the specifications for improvement without notice. Silec trademark is a registred trademark.

Telecom Cables Department / CommercialPhone : +33 1 41 98 09 21 - Fax +33 1 49 98 09 29 - Email : [email protected]

Head office : Rue de Varennes Prolongée - 77876 MONTEREAU CEDEX – FrancePhone : + 33 1 60 57 30 00 Fax : + 33 1 60 57 30 15 www.sileccable.comSAS au capital de 60 037 000 € - 484 920 194 RCS Montereau

Page 107: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

3M™ Fibre Optic Cable Assemblies

3M provides a variety of single mode and multimode cable assemblies that are compliant with international standards. These can be configured as hybrid assemblies, simplex or duplex jumpers or multi-fibre assemblies. All cables use LSZH rated material and Zirconium ceramic ferrules for the highest transmission quality and reliability.

Features • LSZH rated cables • Zirconium ceramic ferrules • Connectors and cables according to IEC standards • PC, UPC and APC end finish • Pigtails with semi-tight buffer • SC and LC assemblies optimal with OM 3 fiber

Benefits • Meets European fire load specifications • High performance and high reliability • Planning safety • Flexibility to customer requests • Easy strip ability • Meets latest cabling standards

Page 108: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Specifications: Fibre: Single mode: According to IEC 60793-2-50 Optical fibres part 2-50 Product specifications – sectional spec for class B single mode fibres – type B1.3 (ITU G652D) Multimode: According to IEC 60793-2-10 Optical fibre part 2-10 Product specifications sectional specification for category A1 multimode fibres – type A1a (50/125) or type A1b(62.5/125) as appropriate. Fibre may be specified as OM3 as defined in ISO 11801. Cable: Low Smoke Zero Halogen: LSZH Flame propagation: IEC 60332-3C Smoke density: IEC 61034 Toxic gas emission: CENELEC HD 605 S1 (test method 1 or test method 2) Corrosive gas: IEC 60754-1

3MTM Fibre Optic Cable Specifications Single Mode

Code Number of Fibres

Cable OD Nominal

(mm) Jacket Colour

Loss/Max 1300/1550

nm (dB/km)

Bandwidth 850/1300 nm

(MHz-km)

Bend Radius (mm)

Tensile Load (installation N)

Cable Weight (kg/km)

Unjacketed AU 1 0,9 White 0,4/0,4 N/A 50 3 0,9 Jacketed AT 1 2,9 Yellow 0,4/0,4 N/A 50 500 7,8 BW 2 2,9 x 5,8 Yellow 0,4/0,4 N/A 50 1000 14,7 CU 1 2,0 Yellow 0,4/0,4 N/A 50 220 3,2 CV 1 2,0 Yellow 0,4/0,4 N/A 50 400 6,7

Multimode

Code Number of Fibres

Cable OD Nominal

(mm) Jacket Colour

Loss/Max 1300/1550

nm (dB/km)

Bandwidth 850/1300 nm

(MHz-km)

Bend Radius (mm)

Tensile Load (installation N)

Cable Weight (kg/km)

50/125 CB 2 2,0 Orange 3,5/1,0 1500/500 OM3 50 220 6,7 ZJ 1 2,9 Orange 3,5/1,0 500/800 50 500 0,9 ZK 1 0,9 Orange 3,5/1,0 500/800 50 3 0,9 ZO 1 0,9 Orange 3,5/1,0 1500/500 OM3 50 3 0,9 AX 2 2,9 x 5,8 Orange 3,5/1,0 500/800 50 1000 16,0 CT 2 2,0 Orange 3,5/1,0 500/800 50 220 6,7 62,5/125 AF 1 2,9 Orange 3,5/1,0 200/500 50 500 7,8 AP 1 0,9 Orange 3,5/1,0 200/500 50 3 0,9 AQ 2 2,9 x 5,8 Orange 3,5/1,0 200/500 50 1000 15,6 CP 2 2,0 Orange 3,5/1,0 200/500 50 220 6,7

Page 109: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Specifications: Connectors: (Multimode and Single Mode) ST: IEC 61754-02 Fibre Optic Connector Interfaces Part 2 Type BFOC/2,5 connector family SC: IEC 61754-04 Fibre Optic Connector Interfaces Part 4 Type SC connector family FC: IEC 61754-13 Fibre Optic Connector Interfaces Part 13 Type FC-PC connector family LC: IEC 61754-20 Fibre Optic Connector Interfaces Part 20 Type LC connector family

3MTM Fibre Optic Connector Specifications

Connector SC SC Angled ST FC FC Angled 2.0 mm LC MT-RJ

Insertion Loss (dB) (one mated pair) Single Mode Multimode

0,2 average 0,5 maximum 0,2 average

0,3 maximum

0,2 average 0,5 maximum

- -

0,2 average 0,5 maximum 0,2 average

0,3 maximum

0,2 average 0,5 maximum 0,2 average

0,3 maximum

0,2 average 0,5 maximum

- -

0,1 average 0,25 max

0,1 average 0,3 maximum

0,2 average 0,5 maximum 0,2 average

0,3 maximum Reflection (dB) Single Mode Multimode

≤ -55 ≤ -25

≤ -70

-

≤ -55 ≤ -25

≤ -55 ≤ -25

≤ -70

-

≤ -55 ≤ -25

≤ -30 ≤ -20

Connection durability (dB) change after 500 matings

<0,2 <0,2 <0,1 <0,2 <0,2 <0,2 <0,3

Operational Temperature connector only (cable dependent)

-25° to 70°C -25° to 70°C -25° to 70°C -25° to 70°C -25° to 70°C -25° to 70°C -10° to 60°C

Storage Temperature -40° to 85°C -40° to 85°C -40° to 85°C -40° to 85°C -40° to 85°C -40° to 85°C -40° to 85°C

Material

Connector Housing Engineered Resin

Engineered Resin

Nickel Plated Zinc

Engineered Resin

Engineered Resin

Engineered Resin

Engineered Resin

Connector Ferrule Zirconia Ceramic

Zirconia Ceramic 8° angle

Zirconia Ceramic

Zirconia Ceramic

Zirconia Ceramic 8° angle

Zirconia Ceramic Composite

Alignment Sleeve Single Mode Multimode

Zirconia Ceramic

Metal

Zirconia Ceramic

-

Zirconia Ceramic

Metal

Zirconia Ceramic

Metal

Zirconia Ceramic

-

Zirconia Ceramic

Metal

No alignment sleeves

Boot Thermoplastic Elastomer

Thermoplastic Elastomer

Thermoplastic Elastomer

Thermoplastic Elastomer

Thermoplastic Elastomer

Thermoplastic Elastomer

Thermoplastic Elastomer

Backbone Nickel Plated Brass

Nickel Plated Brass Zinc Alloy Nickel Plated

Brass Nickel Plated

Brass Nickel Plated

Brass Nickel Plated

Brass Flame Retardent UL-94 V-O UL-94 V-O UL-94 V-O UL-94 V-O UL-94 V-O UL-94 V-O UL-94 V-O

For more detailed technical data, please refer to the 3M Telecommunications Specifications for Fibre Optic Patch cords and Pigtails.

Page 110: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ordering Information:

Catalog # Product Name MOQ Unit Cable Assemblies - Multimode Patch cords duplex ST - ST Multimode 50/125µ BANAN-AX000x ST-ST patchcord duplex multimode 50/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex ST - ST Multimode 62.5/x25µ BANAN-AQ000x ST-ST patchcord duplex multimode 62.5/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex SC - SC Multimode 50/x25µ BDBDB-AX000x SC-SC Patchcord duplex multimode 50/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex SC - SC Multimode 50/x25µ OM3 BDBDB-CB000x SC-SC Patchcord duplex multimode 50/125µ, OM3, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex SC - SC Multimode 62.5/x25µ BDBDB-AQ000x SC-SC Patchcord duplex multimode 62.5/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex ST - SC Multimode 50/x25µ BANDB-AX000x ST-SC Patchcord duplex multimode 50/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex ST - SC Multimode 62.5/x25µ BANDB-AQ000x ST-SC Patchcord duplex multimode 62.5/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex ST – MT - RJ Multimode 50/x25µ BANMT-CT000x ST-MT-RJ Patchcord duplex multimode 50/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex SC - MT - RJ Multimode 50/x25µ BDBMT-CT000x SC-MT-RJ Patchcord duplex multimode 50/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex ST – MT - RJ Multimode 62.5/x25µ BANMT-CP000x ST-MT-RJ Patchcord duplex multimode 62.5/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex SC - MT - RJ Multimode 62.5/x25µ BDBMT-CP000x SC-MT-RJ Patchcord duplex multimode 62.5/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex ST - LC Multimode 50/x25µ , OM3 BANDU-CB0002 ST-LC Patchcord duplex multimode 50/125 OM3, 2m 12 EACH Patch cords duplex SC - LC Multimode 50/x25µ BDBDU-AX000x SC-LC Patchcord duplex multimode 50/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex SC - LC Multimode 50/x25µ OM3 BDBDU-CB000x SC-LC Patchcord duplex multimode 50/125µ, OM3, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex SC - LC Multimode 62.5/x25µ BDBDU-AQ000x SC-LC Patchcord duplex multimode 62.5/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex LC - LC Multimode 50/x25µ BDUDU-AX000x LC-LC Patchcord duplex multimode 50/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex LC - LC Multimode 50/x25µ, OM3 BDUDU-CB000x LC-LC Patchcord duplex multimode 50/125µ, OM3, x = 1, 2, 3 or 5m 12 EACH Patch cords duplex LC - LC Multimode 62.5/x25µ BDUDU-AQ000x LC-LC Patchcord duplex multimode 62.5/125µ, x = 1, 2, 3 or 5m 12 EACH

Page 111: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ordering Information:

Catalog # Product Name MOQ Unit Cable Assemblies – Single Mode Patch cords duplex SC - SC Single-mode 9/x25µ ADADA-BW000x SC-SC Patchcord duplex single-mode 9/125µ, x = 1, 2, 3, 5 or 10m 12 EACH Patch cords duplex SC - LC Single-mode 9/x25µ ADADV-BW000x SC-LC Patchcord duplex single-mode 9/125µ, x = 1, 2, 3, 5 or 10m 12 EACH Patch cords duplex SC/APC - LC Single-mode 9/x25µ AEPDU-BW000x SC/APC-LC Patchcord duplex single-mode 9/125µ, x = 1, 2, 3, 5 or 10m 12 EACH Patch cords duplex LC - LC Single-mode 9/x25µ ADVDV-BW000x LC-LC Patchcord duplex single-mode 9/125µ, x = 1, 2, 3 or 5m 12 EACH Patch cords simplex ST - ST Singlemode 9/x25µ AAMAM-AT000x ST-ST Patchcord simplex singlemode 9/125µm, x = 1, 2, 3 or 5m 12 EACH Patch cords simplex ST - SC Singlemode 9/x25µ AAMDA-AT000x ST-SC/PC Patchcord simplex singlemode 9/125µm, x = 1, 2, 3 or 5m 12 EACH Patch cords simplex SC/PC - SC/PC Singlemode 9/x25µ ADADA-AT000x SC-SC Patchcord simplex Single-mode 9/125µ, x = 1, 2, 3 or 5m 12 EACH Patchcords simplex SC/APC 8° - SC/APC 8° Singlemode 9/x25µ AEPEP-AT000x SC/APC 8°-SC/APC 8°, Patchcord simplex singlemode 9/125µm, x = 1, 2, 3 or 5m 12 EACH Patchcords simplex SC/UPC - SC/UPC Singlemode 9/x25µ AEQEQ-AT000x SC/UPC-SCUPC Patchcord, simplex, singlemode 9/125 , x = 5 or 10m 12 EACH Patchcords simplex FC/PC – FC/PC Singlemode 9/x25µ AENEN-AT000x FC/PC-FC/PC Patchcord simplex singlemode 9/125m, x = 1, 2, 3, 5 or 6m 12 EACH Patchcords simplex SC/APC 8° - SC/PC Singlemode 9/x25µ AEPDA-AT000x SC/APC 8°-SC/PC, Patchcord simplex singlemode 9/125µm, x = 1, 2, or 5m 12 EACH Pigtails Pigtails ST Multimode 900µ semitight BANOO-ZK0002 ST Pigtail Multimode 50/125 green, 2m 12 EACH BANOO-AP0002 ST Pigtail Multimode 62.5/125 blue, 2m 12 EACH Pigtails SC Multimode 900µ semitight BDBOO-ZK0002 SC Pigtail Multimode 50/125 green, 2m 12 EACH BDBOO-ZO0002 SC Pigtail Multimode 50/125 green, 2m, OM3 12 EACH BDBOO-AP0002 SC Pigtail Multimode 62.5/125 blue, 2m 12 EACH Pigtails LC Multimode 900µ semitight BDUOO-ZK0002 LC Pigtail Multimode 50/125 green, 2m 12 EACH BDUOO-ZO0002 LC Pigtail Multimode 50/125 green, 2m, OM3 12 EACH

Page 112: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ordering Information:

Catalog # Product Name MOQ Unit Pigtails

Pigtails ST Single-mode 900µ semitight AANOO-AU0002 ST Pigtail Single-mode 9/125 yellow, 2m 12 EACH Pigtail SC Single-mode 900µ ADAOO-AU0002 SC Pigtail Single-mode 9/125 yellow, 2m, semi tight buffer 12 EACH ADAOO-AU0002-TIGHT SC Pigtail Single-mode 9/125 yellow, 2m, tight buffer 12 EACH ADAOO-AU0002-BLUE SC Pigtail Single-mode 9/125, 2m , blue 12 EACH ADAOO-AU0002-BULK SC Pigtail Single-mode 9/125 yellow, 2m, tight buffer,bulk 240 each 240 EACH Pigtail SC/APC Single-mode 900µ semitight AEPOO-AU0002 SC/APC 8° Pigtail Single-mode 9/125 green, 2m 12 EACH Pigtail SC/UPC Single-mode 900µ semitight AEQOO-AU0003 SC/UPC Pigtail Single-mode 9/125, 900 micron, yellow, 3m 12 EACH AEQOO-CU0005 SC/UPC Pigtail Single-mode 9/125, 2,4mm, yellow, 5m 12 EACH Pigtails FC Single-mode 900µ semitight AENOO-AU0002 FC Pigtail Single-mode 9/125 yellow, 2m 12 EACH Pigtails LC Single-mode 900µ semitight ADVOO-AU0002 LC Pigtail Single-mode9/125 yellow, 2m 12 EACH AEYOO-AU0002 E2000/APC 8° Pigtail, Single-mode 9/125 micron, yellow, 2m 12 EACH

3M and the 3M logo are trademarks of 3M Company. *ST is a Trademark of Lucent. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies. Important Notice 3M does not accept responsability or liability, direct or consequencial arising from reliance upon any information provided and the user should determine the suitability of the products for their intended use. Nothing is the statement will be deemed to exclude or restrict 3M’s liability for death or personnal injury arising from its negligence. All questions of liability relating to 3M products are governed by the sellers’s terms of sale subject where applicable to the prevailing law. If any goods supplied or processed by or on behalf of 3M prove on inspection to be defective in material or workmanship, 3M will (at its option) replace the same or refund to the Buyer the price of the goods or services. Except as set out above, all warranties and conditions, whether express or implied, statutory or otherwise are excluded to the fullest extent permissible at law.

3M Telecommunications Europe, Middle East & North Africa Tel: ++49 (0)2131 / 14-5999 c/o Quante AG Fax: ++49 (0)2131 / 14-5998 Carl-Schurz-Stabe 1 • 41453 Neuss • Germany Internet: www.3MTelecommunications.com Recycled Paper

Page 113: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

WaveStar ® ADM 16/1Release 8.0

Application and Planning Guide

365-312-833CC109571158

Issue 1May 2005

Lucent Technologies - ProprietaryThis document contains proprietary information of Lucent Technologies and

is not to be disclosed or used except in accordance with applicable agreements.

Copyright © 2005 Lucent TechnologiesUnpublished and Not for Publication

All Rights Reserved

See notice on first age

Page 114: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

This material is protected by the copyright and trade secret laws of the United States and other countries. It may not be reproduced, distributed,or altered in any fashion by any entity (either internal or external to Lucent Technologies), except in accordance with applicable agreements,contracts or licensing, without the express written consent of Lucent Technologies and the business management owner of the material.

Trademarks

All trademarks and service marks specified herein are owned by their respective companies.

Notice

Every effort has been made to ensure that the information in this document was complete and accurate at the time of printing. However,information is subject to change.

See notice on first age

Lucent Technologies - ProprietarySee notice on first page

Page 115: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Contents

BOOKMARK1::About this information productAbout this information product

BOOKMARK2::PurposePurpose xvii

BOOKMARK3::Reason for reissueReason for reissue xviii

BOOKMARK4::How to use this information productHow to use this information product xviii

BOOKMARK5::Intended audienceIntended audience xix

BOOKMARK6::Conventions usedConventions used xx

BOOKMARK7::Differences between Release 4.0 (Ruby) and 5.0 (Diamond)Differences between Release 4.0 (Ruby) and 5.0 (Diamond) xx

BOOKMARK8::Differences between Release 5.0 (Diamond) and 5.1 (Pearl)Differences between Release 5.0 (Diamond) and 5.1 (Pearl) xxi

BOOKMARK9::Differences between Release 5.1 (Pearl) and Release 6.0 (Garnet)Differences between Release 5.1 (Pearl) and Release 6.0 (Garnet) xxiii

BOOKMARK10::Differences between Release 6.0 (Garnet) and Release 6.1 (Garnet)Differences between Release 6.0 (Garnet) and Release 6.1 (Garnet) xxiii

BOOKMARK11::Differences between Release 6.1 (Garnet) and Release 6.2 (Garnet Maintenance)Differences between Release 6.1 (Garnet) and Release 6.2 (GarnetMaintenance) xxiv

BOOKMARK12::Differences between Release 6.2 (Garnet Maintenance) and Release 7.0 (Earth)Differences between Release 6.2 (Garnet Maintenance) and Release 7.0(Earth) xxiv

BOOKMARK13::Differences between Release 7.0 (Earth) and Release 8.0 (Mars)Differences between Release 7.0 (Earth) and Release 8.0 (Mars) xxv

BOOKMARK14::Conventions usedConventions used xxv

BOOKMARK15::Related informationRelated information xxvi

BOOKMARK16::Information product supportInformation product support xxviii

BOOKMARK17::Technical supportTechnical support xxviii

BOOKMARK18::How to orderHow to order xxviii

BOOKMARK19::How to commentHow to comment xxviii

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

C O N T E N T Si i i

Page 116: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

.....................................................................................................................................................................................................................................

1 BOOKMARK20::1 IntroductionIntroduction

BOOKMARK21::OverviewOverview 1-1

BOOKMARK22::TheWaveStar

®

ADM 16/1 systemThe WaveStar® ADM 16/1 system 1-2

BOOKMARK23::ApplicationsApplications 1-3

BOOKMARK24::Concise system descriptionConcise system description 1-4

.....................................................................................................................................................................................................................................

2 BOOKMARK25::2 FeaturesFeatures

BOOKMARK26::OverviewOverview 2-1

BOOKMARK27::Feature overviewFeature overview 2-3

BOOKMARK28::Protection mechanismsProtection mechanisms 2-5

BOOKMARK29::Synchronization and timingSynchronization and timing 2-7

BOOKMARK30::AU-3 / TU-3 conversionAU-3 / TU-3 conversion 2-9

BOOKMARK31::Integrated optical booster and booster pre-amplifierIntegrated optical booster and booster pre-amplifier 2-10

BOOKMARK32::Remote maintenance, management and controlRemote maintenance, management and control 2-11

BOOKMARK33::Installation practiceInstallation practice 2-14

BOOKMARK34::Ethernet over SDHEthernet over SDH 2-15

BOOKMARK35::Virtual concatenationVirtual concatenation 2-24

BOOKMARK36::Spanning tree protocol (STP)Spanning tree protocol (STP) 2-30

BOOKMARK37::GARP VLAN Registration Protocol (GVRP)GARP VLAN Registration Protocol (GVRP) 2-35

BOOKMARK38::Ethernet over SDH applicationsEthernet over SDH applications 2-38

BOOKMARK39::Operational modesOperational modes 2-46

BOOKMARK40::Tagging modesTagging modes 2-57

BOOKMARK41::Port provisioningPort provisioning 2-64

BOOKMARK42::Quality of Service (QoS) overviewQuality of Service (QoS) overview 2-70

BOOKMARK43::Classification, queueing and schedulingClassification, queueing and scheduling 2-74

BOOKMARK44::Quality of Service provisioningQuality of Service provisioning 2-84

BOOKMARK45::Performance monitoringPerformance monitoring 2-86....................................................................................................................................................................................................................................

C O N T E N T Si v

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 117: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

.....................................................................................................................................................................................................................................

3 BOOKMARK46::3 ApplicationsApplications

BOOKMARK47::OverviewOverview 3-1

BOOKMARK48::SummarySummary 3-2

BOOKMARK49::STM-N point-to-point (end) terminal applicationSTM-N point-to-point (end) terminal application 3-3

BOOKMARK50::STM-16 two fiber add/drop terminal in linear applications and ringsSTM-16 two fiber add/drop terminal in linear applications and rings 3-5

BOOKMARK51::Hubbing functionalityHubbing functionality 3-9

BOOKMARK52::Small cross-connectSmall cross-connect 3-10

BOOKMARK53::Broadcasting functionalityBroadcasting functionality 3-11

BOOKMARK54::Payload concatenationPayload concatenation 3-12

BOOKMARK55::Tributary interface mixingTributary interface mixing 3-14

BOOKMARK56::Ring closure: single ADM interconnecting STM-16 and STM-1/4 ringsRing closure: single ADM interconnecting STM-16 and STM-1/4 rings 3-15

BOOKMARK57::Dual Node Interworking (DNI)Dual Node Interworking (DNI) 3-16

BOOKMARK58::SONET-SDH conversion and interworkingSONET-SDH conversion and interworking 3-17

BOOKMARK59::Multi-service application withTransLAN

®

cardMulti-service application withTransLAN® card 3-19

.....................................................................................................................................................................................................................................

4 BOOKMARK60::4 DescriptionDescription

BOOKMARK61::OverviewOverview 4-1

BOOKMARK62::BasicWaveStar

®

ADM 16/1 architectureBasicWaveStar® ADM 16/1 architecture 4-2

BOOKMARK63::Shelf complementsShelf complements 4-6

BOOKMARK64::Electrical paddle boardsElectrical paddle boards 4-8

BOOKMARK65::Circuit packsCircuit packs 4-9

BOOKMARK66::Timing and synchronizationTiming and synchronization 4-39

BOOKMARK67::Redundancy and protectionRedundancy and protection 4-44

.....................................................................................................................................................................................................................................

5 BOOKMARK68::5 Operations, administration, maintenance, and provisioningOperations, administration, maintenance, and provisioning

BOOKMARK69::OverviewOverview 5-1

BOOKMARK70::OperationsOperations 5-2

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

C O N T E N T Sv

Page 118: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

BOOKMARK71::AdministrationAdministration 5-9

BOOKMARK72::MaintenanceMaintenance 5-14

BOOKMARK73::ProvisioningProvisioning 5-17

.....................................................................................................................................................................................................................................

6 BOOKMARK74::6 Cross-product interworkingCross-product interworking

BOOKMARK75::OverviewOverview 6-1

BOOKMARK76::Lucent Technologies SDH product familyLucent Technologies SDH product family 6-2

.....................................................................................................................................................................................................................................

7 BOOKMARK77::7 Physical designPhysical design

BOOKMARK78::OverviewOverview 7-1

BOOKMARK79::IntroductionIntroduction 7-2

BOOKMARK80::The subrackThe subrack 7-3

BOOKMARK81::The printed circuit boardsThe printed circuit boards 7-5

BOOKMARK82::The dual WDM unitThe dual WDM unit 7-6

BOOKMARK83::The interconnection panel (ICP)The interconnection panel (ICP) 7-7

BOOKMARK84::Face plates for front access unitsFace plates for front access units 7-9

BOOKMARK85::ETSI compliant racks 600 × 600 mmETSI compliant racks 600 × 600 mm 7-10

BOOKMARK86::Horizontal connector plate (HCP)Horizontal connector plate (HCP) 7-11

BOOKMARK87::Fiber connector conversion kitFiber connector conversion kit 7-12

BOOKMARK88::Rack fiber guidanceRack fiber guidance 7-14

BOOKMARK89::CablingCabling 7-15

.....................................................................................................................................................................................................................................

8 BOOKMARK90::8 System planning and engineeringSystem planning and engineering

BOOKMARK91::OverviewOverview 8-1

BOOKMARK92::Network planningNetwork planning 8-2

BOOKMARK93::Network synchronizationNetwork synchronization 8-3

BOOKMARK94::WaveStar

®

ADM 16/1 system planning and engineeringWaveStar® ADM 16/1 system planning and engineering 8-5

BOOKMARK95::Paddle boards (electrical interfaces)Paddle boards (electrical interfaces) 8-16

....................................................................................................................................................................................................................................

C O N T E N T Sv i

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 119: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

BOOKMARK96::ConfigurationsConfigurations 8-18

.....................................................................................................................................................................................................................................

9 BOOKMARK97::9 Technical dataTechnical data

BOOKMARK98::OverviewOverview 9-1

BOOKMARK99::Optical interfacesOptical interfaces 9-3

BOOKMARK100::Electrical interfacesElectrical interfaces 9-4

BOOKMARK101::Optical connector interfaceOptical connector interface 9-5

BOOKMARK102::Optical source and detectorOptical source and detector 9-6

BOOKMARK103::Optical safetyOptical safety 9-7

BOOKMARK104::Optical power budgetsOptical power budgets 9-8

BOOKMARK105::Power specificationPower specification 9-13

BOOKMARK106::DimensionsDimensions 9-15

BOOKMARK107::System weightSystem weight 9-16

BOOKMARK108::Electrical connectorsElectrical connectors 9-17

BOOKMARK109::Environmental specificationsEnvironmental specifications 9-18

BOOKMARK110::General ITU-T recommendationsGeneral ITU-T recommendations 9-19

BOOKMARK111::Mapping structureMapping structure 9-20

BOOKMARK112::Electrical interfacesElectrical interfaces 9-22

BOOKMARK113::Operations system interfacesOperations system interfaces 9-23

BOOKMARK114::Customer data interfacesCustomer data interfaces 9-24

BOOKMARK115::Ethernet interfacesEthernet interfaces 9-25

BOOKMARK116::Timing and network synchronizationTiming and network synchronization 9-26

BOOKMARK117::Transmission performanceTransmission performance 9-27

BOOKMARK118::Performance monitoringPerformance monitoring 9-28

BOOKMARK119::Network element configurationsNetwork element configurations 9-31

BOOKMARK120::Operations, administrations, maintenance, and protectionOperations, administrations, maintenance, and protection 9-32

BOOKMARK121::Network managementNetwork management 9-33

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

C O N T E N T Sv i i

Page 120: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

BOOKMARK122::Bandwidth managementBandwidth management 9-34

BOOKMARK123::Protection and redundancyProtection and redundancy 9-35

BOOKMARK124::Overhead bytes processingOverhead bytes processing 9-37

BOOKMARK125::Supervision and alarmsSupervision and alarms 9-40

.....................................................................................................................................................................................................................................

10 BOOKMARK126::10 Quality and reliabilityQuality and reliability

BOOKMARK127::OverviewOverview 10-1

BOOKMARK128::Lucent Technologies’ quality policyLucent Technologies’ quality policy 10-2

BOOKMARK129::Environmental aspectsEnvironmental aspects 10-3

BOOKMARK130::Reliability programReliability program 10-5

BOOKMARK131::Reliability specificationsReliability specifications 10-6

BOOKMARK132::Maintainability specificationMaintainability specification 10-10

.....................................................................................................................................................................................................................................

11 BOOKMARK133::11 Product supportProduct support

BOOKMARK134::OverviewOverview 11-1

BOOKMARK135::IntroductionIntroduction 11-2

BOOKMARK136::Engineering and installation servicesEngineering and installation services 11-3

BOOKMARK137::Training supportTraining support 11-4.....................................................................................................................................................................................................................................

GL BOOKMARK138::GlossaryGlossary GL-1.....................................................................................................................................................................................................................................

IN BOOKMARK139::IndexIndex IN-1

....................................................................................................................................................................................................................................

C O N T E N T Sv i i i

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 121: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

List of tables

1 WaveStar® ADM 16/1 documentation set xxvii

.....................................................................................................................................................................................................................................

4 Description

4-1 Paddle boards 4-8

4-2 Port roles 4-18

4-3 Overview of the virtual switch modes 4-20

4-4 Overview of the QoS capabilities per operational mode 4-28

4-5 Fixed mapping of user priority to egress queue on customerports 4-30

.....................................................................................................................................................................................................................................

7 Physical design

7-1 Connectors 7-7

7-2 Racks 7-10

7-3 Overview of interface types, cables and connector 7-11

7-4 Optical cable conversion 7-13

7-5 Rack fiber guides 7-14

7-6 Characteristics of customer cabling and semi prefab cabling 7-15

.....................................................................................................................................................................................................................................

8 System planning and engineering

8-1 Configuration of EFA4 8-5

8-2 Circuit packs 8-9

8-3 Core configuration of theWaveStar® ADM 16/1 8-11

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

T A B L E Si x

Page 122: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

8-4 Line interface units 8-11

8-5 Optical tributary interfaces 8-13

8-6 Electrical tributary interfaces 8-14

8-7 Timing and synchronization interfaces for DS0 markets 8-15

8-8 Paddle boards 8-16

8-9 WaveStar® ADM 16/1 terminal STM-16 (0 × 1, all interfaces) 8-18

8-10 WaveStar® ADM 16/1 add/drop multiplexer STM-16 (higherorder interfaces) 8-20

8-11 WaveStar® ADM 16/1 add/drop multiplexer STM-16 (longdistance rings, with LO grooming of 504 × 2 Mbit/s) 8-21

8-12 WaveStar® ADM 16/1 add/drop multiplexer STM-16 (STM-1and STM-4 ring-closure on tributaries) 8-23

8-13 WaveStar® ADM 16/1; Japanese and United States of Americauses 8-25

8-14 WaveStar® ADM 16/1 local cross-connect 8-26

8-15 WaveStar® ADM 16/1 DWDM access terminal STM-16 (OLS1.6T, to be used with higher order interfaces) 8-28

.....................................................................................................................................................................................................................................

9 Technical data

9-1 Optical interfaces 9-3

9-2 Electrical interfaces 9-4

9-3 Technical specifications of the optical source and detector 9-6

9-4 STM-0 / STM-1/STM-4 9-8

9-5 STM-16 9-8

9-6 1000BASE-SX / 1000BASE-LX 9-9

9-7 1000BASE-ZX 9-10

9-8 Booster, booster/pre-amplifier and OLS 1.6T 9-11

9-9 Voltage range 9-13

9-10 Power dissipation 9-13

9-11 Power consumption 9-13....................................................................................................................................................................................................................................

T A B L E Sx

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 123: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

9-12 Climatic conditions 9-18

9-13 Environmental conditions 9-18

9-14 Timing modes 9-26

9-15 Performance monitoring termination points 9-28

9-16 Performance monitoring bins 9-28

9-17 RSOH byte usage for STM-0 and STM-1 9-37

9-18 RSOH byte usage for STM-4 and STM-16 9-37

9-19 MSOH byte usage for STM-0 and STM-1 9-38

.....................................................................................................................................................................................................................................

10 Quality and reliability

10-1 Protection switching options 10-6

10-2 WaveStar® ADM 16/1 circuit packs fit rate 10-7

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

T A B L E Sx i

Page 124: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 125: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

List of figures

1 Introduction

1-1 WaveStar® ADM 16/1 basic architecture 1-5

.....................................................................................................................................................................................................................................

3 Applications

3-1 WaveStar® ADM 16/1 0 × 1 end terminal STM-16point-to-point application 3-3

3-2 WaveStar® ADM 16/1 1+1 MSP protected end terminal,STM-16 point-to-point application 3-3

3-3 WaveStar® ADM 16/1 linear add/drop application 3-5

3-4 WaveStar® ADM 16/1 “folded or collapsed ring” application 3-5

3-5 TheWaveStar® ADM 16/1 ring application 3-6

3-6 MS-SPRing protected STM-16 rings withWaveStar® ADM16/1 3-7

3-7 Upgrade “folded ring” to conventional ring 3-8

3-8 Example of a hub terminal configuration 3-9

3-9 WaveStar® ADM 16/1 used as a ring-closure network element 3-15

3-10 WaveStar® ADM 16/1 used as DNI network element 3-16

3-11 OC-3/OC-12 interworking with STM-1o/STM-4o via AU-3 toTU-3 conversion 3-17

3-12 Remapping of VC-3 from AU-3 to TU-3/AU-4 3-18

3-13 OC-3c/OC-12c interworking with STM-1o/STM-4o 3-18

3-14 Example of direct LAN-LAN interconections 3-19

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

F I G U R E Sx i i i

Page 126: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

3-15 Example of direct LAN-LAN interconections 3-20

3-16 GbE Point multi-point services example 3-20

3-17 Example of a LAN-VPN application 3-21

3-18 VLAN trunking example 3-22

3-19 Ethernet to GE trunking example 3-22

3-20 DCN support with Ethernet LAN tributary unit 3-23

.....................................................................................................................................................................................................................................

4 Description

4-1 WaveStar® ADM 16/1 basic architecture 4-2

4-2 WaveStar® ADM 16/1 high density shelf (EFA4) configuration 4-7

4-3 WAN port in customer role 4-17

4-4 LAN port in network role 4-18

4-5 VLAN trunking application example 4-23

4-6 Spanning tree separation 4-25

4-7 Examples of loops not detected when running ST on WAN portsonly 4-26

4-8 QoS functional blocks 4-28

4-9 One-ratetwo-color marker 4-31

4-10 Performance monitoring counters 4-34

4-11 Power and timing architecture 4-39

4-12 Timing modes (FR selected) 4-41

4-13 Timing at circuit pack level of theWaveStar® ADM 16/1 4-43

4-14 DNI between two MS-SPRing rings 4-51

4-15 DNI with drop & continue between MS-SPRing and LO-SNCP,two node configuration.Traffic from MS-SPRing to LO-SNCP 4-51

4-16 DNI with drop & continue between MS-SPRing and LO-SNCP,two node configuration.Traffic from LO-SNCP to MS-SPRing 4-51

4-17 DNI with drop & continue between MS-SPRing and LO-SNCP,two node configuration. Detailed view of interconnecting nodes 4-52

....................................................................................................................................................................................................................................

F I G U R E Sx i v

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 127: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

.....................................................................................................................................................................................................................................

5 Operations, administration, maintenance, and provisioning

5-1 WaveStar® ADM 16/1 user panel: SC faceplate 5-3

5-2 Performance monitoring counters 5-13

.....................................................................................................................................................................................................................................

7 Physical design

7-1 Subrack 7-3

7-2 Interconnection panel 7-7

.....................................................................................................................................................................................................................................

8 System planning and engineering

8-1 WaveStar® ADM 16/1 EFA4 high-density subrack 8-6

.....................................................................................................................................................................................................................................

9 Technical data

9-1 Performance monitoring counters 9-30

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

F I G U R E Sx v

Page 128: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 129: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

About this information product

...............................................................................................................................................................................................................................................................

Purpose This Application and Planning Guide provides information about thefeatures, applications, operation, engineering, support andspecifications of theWaveStar® ADM 16/1 Multiplexer and Transportsystem. This Application and Planning Guide is the most recentversion of the Earth Release, R8.0.

The WaveStar® ADM 16/1 is a high-capacity intelligent multiplexerand transport system able to multiplex standard PDH, Ethernet andSDH bit rates to a higher level up to 2.5 Gbit/s (STM-16). Because ofthis wide range in capacity, this system is a useful element in buildingefficient and flexible networks.

The WaveStar® ADM 16/1 system consists of one common hardwareplatform. This platform can serve a family of equipment and softwareconfigurations designed to support a particular set of applications.

The WaveStar® ADM 16/1 supports a large variety of configurationsfor various network applications:

• STM-16, STM-4, STM-1 point-to-point (end) terminalconnections. Options are: 0x1 terminal with no line protectionand 1+1 MSP line-protected terminal

• STM-16, STM-4, STM-1 two fiber add/drop terminal in linearapplications and rings

• Hubbing functionality

• Small cross-connect

• Broadcasting functionality

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005,

Lucent Technologies - ProprietarySee notice on first page

x v i i

Page 130: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• Payload concatenation:

– Virtual Concatenation onTransLAN® Card

– Interconnecting ATM systems via VC-4-4c concatenation

• Tributary interface mixing

• Single ADM for interconnection of STM-16, STM-4 and STM-1rings (ring closure)

• Dual Node Interworking (DNI) with drop & continue

• SONET-SDH Conversion and Interworking

• Multi-Service applications withTransLAN® Card.

In this Application and Planning Guide of theWaveStar® ADM 16/1,all features are presented up to and including the Earth Release, R8.0.

Reason for reissue

How to use thisinformation product

This Guide is organized as follows

• About this documentDescribes the purpose, intended audience, and organization ofthis document. This section also references other relateddocumentation.

• Chapter 1, “Introduction”This chapter describes theWaveStar® ADM 16/1.

• Chapter 2, “Features”This chapter briefly describes the Features and Benefits of theWaveStar® ADM 16/1. These are described in greater detail inChapter 3, “Applications”, Chapter 4, “Description”, Chapter 5,“Operations, administration, maintenance, and provisioning”,Chapter 6, “Cross-product interworking”as applicable.

• Chapter 3, “Applications”This chapter describes how theWaveStar® ADM 16/1 platformmeets various needs relating to network-level-specific topologies.In addition, it describes needs and provided functionality relatingto various different applications such as point-to-point, ring,hubbing, etc.Also special system versions for applications in combination withother products of the Lucent Technologies family of SDHproducts are briefly discussed.

• Chapter 4, “Description”This chapter describes theWaveStar® ADM 16/1 architecture.After an introduction of theWaveStar® ADM 16/1 platform, thesystem control, transmission, synchronization, protection andpowering are described down to circuit pack level.

About this information product

....................................................................................................................................................................................................................................

x v i i i Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

,

Page 131: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• Chapter 5, “Operations, administration, maintenance, andprovisioning”This chapter defines the “maintenance philosophy” outlining thevarious features available to monitor and maintain theWaveStar®

ADM 16/1.

• Chapter 6, “Cross-product interworking”This chapter briefly describes the interworking between theWaveStar® ADM 16/1 and other products of LucentTechnologies’ SDH product family.

• Chapter 7, “Physical design”This chapter describes the physical design, subrack, rack layoutsand the connector panels of theWaveStar® ADM 16/1.

• Chapter 8, “System planning and engineering”This chapter summarizes descriptive information used with theapplication information to plan procurement deployment of theWaveStar® ADM 16/1.

• Chapter 9, “Technical data”This chapter lists the detailed technical specifications for theWaveStar® ADM 16/1.

• Chapter 10, “Quality and reliability”This chapter describes Lucent Technologies’ quality policy anddescribes the reliability of theWaveStar® ADM 16/1 in differentconfigurations.

• Chapter 11, “Product support”This chapter describes how Lucent Technologies supports theWaveStar® ADM 16/1. This includes information aboutengineering and installation services, technical support,documentation support, and training.

• “Glossary”This chapter lists in alphabetic order all the terms and acronymsused in the Application and Planning Guide.

Intended audience This Application and Planning Guide is primarily for network plannersand engineers. However, it is also useful for anyone who needsspecific information about the features, applications, operation andengineering of theWaveStar® ADM 16/1 Multiplexer and TransportSystem.

About this information product

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005,

Lucent Technologies - ProprietarySee notice on first page

x i x

Page 132: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Conventions used

Differences betweenRelease 4.0 (Ruby) and 5.0

(Diamond)

1. New LAN unit (LJB459) withTransLAN® features (FEP5536)

a. Ethernet/Fast Ethernet mapping into VC-12xv or VC-3-xvsignals

b. VPN services

c. Interworking withWaveStar® ADM 16/1 Compact andWaveStar® AM 1 Plus TransLAN® Card units

d. Configurable Auto-negotiation function onWaveStar®

TransLAN® card units

e. Performance Monitoring on LAN connections

2. Provisioning of ss bits (FEP5732)

• In the source direction, the transmitted ss-bits can beprovisioned in “10” (SDH mode,

• default) or “00” (SONET mode). In the sink direction theincoming ss bits are ignored.

3. MS-SPRing event information available onWaveStar® ITM-SCNB CORBA Interface (FEP4920)The WaveStar® ADM 16/1 provides the numerical value, calledNID (between 0 and 15 – corresponding with the 4 bits in theK-byte protocol as per ITU-T G.841) to theWaveStar® ITM-SC.The WaveStar® ITM-SC will then make the event informationavailable on the NB CORBA Interface.

4. Pointer Justification Event (PJE) counters on STM-N (FEP 5534)The following parameters are available to estimate thesynchronization performance:

• PJE–: count of negative pointer justifications

• PJE+: count of positive pointer justificationsBoth counters are present on one outgoing AU-4 pointergeneration circuit per outgoing STM-N.

5. AIS detection on 2 Mbit/s ports for asynchronous mapping (FEP5801)It is possible to monitor the CRC-4, E-bit and A-bit informationin TS0 of any 2 Mbit/s in both directions for performancemonitoring purposes for G.704 structured 2 Mbit/s tributaries.

About this information product

....................................................................................................................................................................................................................................

x x Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

,

Page 133: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Differences betweenRelease 5.0 (Diamond) and

5.1 (Pearl)

1200 monitoring points for full TCM emulation (FEP5718)

The WaveStar® ADM 16/1 supports the possibility to performancemonitor 1200 monitor points simultaneously. Note: OnWaveStar®

ADM 16/1 this feature can only be used in combination with Rubycontroller hardware (LJB457B) and Ruby Cross-connect-64/32(LJB434).

TransLAN ® features (FEP 5517 and 5753)

With the Pearl Rainbow Release a number of new features aresupported on the Ethernet LAN tributary board, LJB459. Please notethat onWaveStar® ADM 16/1 these features are only supported withRuby controller hardware (LJB457B).

1. Layer 2 VPN Data PolicingIn addition to Multi-port LAN Bridging with VPN support theWaveStar® ADM 16/1 supports provisioning of data policingparameters at each external Ethernet port to allow L2 QoS andbandwidth management for each VPN of a L2 network.Each external Ethernet port of a switching relation in VPN modecan get assigned data policing parameters. The followingparameters are supported:

• Policing Mode with two possible values [Strict policing |Oversubscription] determined via provisioning a PeakInformation Rate (PIR)

• Committed Information Rate (CIR) per Port/User-Priority orPort/VLAN/User-Priority (Diamond Release, R5.0) relevantin both policing modes

In case of strict policing (PIR provisioned equal to CIR) allincoming packets from the associated external Ethernet portwhich exceed the provisioned CIR will be dropped. Inover-subscription mode (PIR provisioned above CIR) packetsexceeding the CIR will be marked by raising their dropprecedence and only dropped if an congestion situation occursduring switching. This means that over-subscription mode allowsa peak rate in the range of the physical line rate interconnectingthe switches which are building the L2 network, but without anyguaranteed bandwidth.Note: It is the responsibility of the operator to ensure a suitable

About this information product

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005,

Lucent Technologies - ProprietarySee notice on first page

x x i

Page 134: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

provisioning of CIR for each Ethernet port in relation to theunder-laying L2 network topology to prohibit data congestion onany physical link which are interconnecting the switches of thenetwork. With congestion the provisioned CIRs are notguaranteed.

2. Dual VLAN Tagging mode supportThe WaveStar® ADM 16/1 is able to support both Port-basedVPN Customer Tagging and IEEE 802.1Q VLAN Tagging.Lucent proprietary Port-based VPN Customer Tagging is alreadysupported by the Diamond Release. Switching between taggingmodes is traffic affecting and requires VLAN configurationre-engineering.

3. Traffic segregation via IEEE 802.1Q VLAN tagThe WaveStar® ADM 16/1 supports VLAN Tagging,Classification and Filtering compliant to IEEE802.1Q on all of itsexternal Ethernet LAN ports or internal WAN ports. This Taggingmode is incompatible with the Port-based VPN CustomerTagging mode.The packets are processed as follows:

• End-customer VLAN-tagged packets are VLAN classifiedaccording to the VLAN Id contained in the VLAN Tag. Thesystem performs VLAN Ingress filtering based on portmembership of the receive port to the specific VLAN.

• End-customer untagged and priority-tagged packets areVLAN classified according to a default Port VLAN Id(PVID identifying an end-customer with Port-based VPNCustomer Tagging mode) assigned to the receive port. Thesystem inserts the PVID in the VLAN Tag.

VLAN Id shall be unique among end-customers.

4. Ethernet/Fast Ethernet VLAN TrunkingThe WaveStar® ADM 16/1 is able to aggregate Ethernet or FastEthernet traffic of multiple end-customers over a single externalEthernet port. Such a VLAN Trunk port is a shared member ofmultiple VLANs from different end-customers. The VLAN Id listis configurable as per IEEE 802.1Q VLAN Tagging.

About this information product

....................................................................................................................................................................................................................................

x x i i Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

,

Page 135: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

5. Manual Provisioning of Spanning Tree parametersFrom WaveStar® ITM-SC or ITM-CIT, the operator canmanually provision the bridge parameters to force a specificspanning tree topology and ensure better bandwidth utilization.The operator has access to a limited set of parameters regardingthe active Spanning Tree topology and has means to control it forpro-active maintenance.

6. GVRP – automatic provisioning of VLAN ID in intermediatenodesThe WaveStar® ADM 16/1 supports the GARP VLANRegistration Protocol (GVRP) to help maintaining VLANidentification consistency and connectivity throughout theswitched WAN network. GVRP is a Generic AttributeRegistration Protocol (GARP) application that provides VLANpruning and dynamic VLAN creation on 802.1Q Trunk links.With GVRP, switches distribute automatically VLANconfiguration information to other switches, prune unnecessarybroadcast and unknown unicast traffic, and dynamically createand manage VLANs on switches connected to IEEE 802.1QTrunk links. The GVRP protocol provides a mechanism fordynamic maintenance of the contents of the bridge filteringdatabase. GVRP implementation is compliant with IEEE 802.1QClause 11.Note: unlike Cisco’s VLAN Trunk Protocol (VTP) protocol,standard GVRP does not propagate VLAN names.

Differences betweenRelease 5.1 (Pearl) and

Release 6.0 (Garnet)

FEP5905: 6 channel E3 and 6 channel DS3 unit for WaveStar ®

ADM 16/1

The tributary unit PI-E3/6 has 6 interfaces of 34 Mbit/s and animpedance of 75Ω. The PI-DS3/6 has also 6 interfaces and animpedance 75Ω. However, the speed is 45 Mbit/s.

Differences betweenRelease 6.0 (Garnet) and

Release 6.1 (Garnet)

• IEEE 802.1w Rapid Spanning Tree

• Implement Ethernet GFP encapsualtion on the FETransLAN®

Card

About this information product

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005,

Lucent Technologies - ProprietarySee notice on first page

x x i i i

Page 136: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• Capability to transport Ethernet-like frames of up to 1650 byteslength

• Fast download system software through Q-LAN interface

Differences betweenRelease 6.1 (Garnet) and

Release 6.2 (GarnetMaintenance)

Gigabit Ethernet features onWaveStar® ADM 16/1:

• Gigabit Ethernet 1000BASE-SX/LX interfaces

• Fast Ethernet to Gigabit Ethernet trunking

• Gigabit Ethernet “Lite”, point-to-point and rings

• Scalable bandwidth through virtual concatenation VC-3/4-Xv andLCAS

• New board PI-E3DS3/12 (LJB463): 12 × 34 Mbit/s or455 Mbit/s interfaces per circuit pack (ports independentlyprovisionable), supported by System Controller SC2

Differences betweenRelease 6.2 (Garnet

Maintenance) and Release7.0 (Earth)

The following list gives an overview on the additional featuresprovided by Release 7.0:

• The rule “VLAN ID uniqueness per NE” has been improved to“VLAN ID uniqueness only necessary per switch pack”.

• Flexibility of VLAN provisioning per NE: Up to 1024 VLANsand CIDs can be configured per NE.

• Double-tagging (VPN tagging) is now also possible for frames onLAN ports in Ethernet, Fast Ethernet and Gigabit Ethernet:

• Enhancements for “Customer WAN port” onTransLAN®:The Rapid Spanning Tree Protocol can be disabled on WANports and rate cotrol is possible.

• VPN tagging onTransLAN® with standard protocols andstandard Ethertype

• Increased IEEE VLAN instances onTransLAN® unit

• Support of 1024 VLAN IDs on Gigabit Ethernet if GVRP isdisabled and support of 247 VLAN IDs if GVRP is enabled

• Non-instrusive performance monitoring is possible for any 2Mbit/s (E1) signal in both directions (PDH to SDH and SDH toPDH) at the 2 Mbit/s interfaces. Thus port problems can beidentified during installation.

• NE release details available for display on the OMS

• The LCAS protocol is also available on VC-3 level for GigabitEthernetTransLAN® cards

• SFP Inventory Data with Lucent-specific information

• SFP type translation into GUI

About this information product

....................................................................................................................................................................................................................................

x x i v Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

,

Page 137: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Differences betweenRelease 7.0 (Earth) and

Release 8.0 (Mars)

The following list gives an overview on the additional featuresprovided by Release 8.0:

• Ingress rate control in provider bridge mode

• Oversubscription in IEEE tagging mode

• Flow classification in provider bridge mode

Conventions used These conventions are used in this document:

Numbering

The chapters of this document are numbered consecutively. The pagenumbering restarts at “1” in each chapter. To facilitate identifyingpages in different chapters, the page numbers are prefixed with thechapter number. For example, page 2-3 is the third page in chapter 2.

Cross-references

Cross-reference conventions are identical with those used fornumbering, i.e. the first number in a reference to a particular pagerefers to the corresponding chapter.

Keyword blocks

This document contains so-called keyword blocks to facilitate thelocation of specific text passages. The keyword blocks are placed tothe left of the main text and indicate the contents of a paragraph orgroup of paragraphs.

Typographical conventions

Special typographical conventions apply to elements of the graphicaluser interface (GUI), file names and system path information,keyboard entries, alarm messages etc.

• Elements of the graphical user interface (GUI)These are examples of text that appears on a graphical userinterface (GUI), such as menu options, window titles or pushbuttons:

– Provision , Delete , Apply , Close , OK (push-button)

– Provision Timing/Sync (window title)

– View Equipment Details (menu option)

– Administration → Security → User Provisioning (pathfor invoking a window)

• File names and system path informationThese are examples of file names and system path information:

– setup.exe

– C:\Program Files\Lucent Technologies

• Keyboard entries

About this information product

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005,

Lucent Technologies - ProprietarySee notice on first page

x x v

Page 138: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

These are examples of keyboard entries:

– F1, Esc X , Alt-F , Ctrl-D , Ctrl-Alt-Del (simple keyboard entries)A hyphen between two keys means that both keys have tobe pressed simultaneously. Otherwise, a single key has to bepressed, or several keys have to be pressed in sequence.

– copy abc xyz (command)A complete command has to be entered.

• Alarms and error messagesThese are examples of alarms and error messages:

– Loss of Signal

– Circuit Pack Failure

– HP-UNEQ, MS-AIS, LOS, LOF

– Not enough disk space available

Abbreviations

Abbreviations used in this document can be found in the “Glossary”unless it can be assumed that the reader is familiar with theabbreviation.

Related information This section briefly describes the documents that are included in theWaveStar® ADM 16/1 documentation set.

Installation Guide

The WaveStar® ADM 16/1 Installation Guide (IG) is a step-by-stepguide to system installation and setup. It also includes informationneeded for pre-installation site planning and post-installationacceptance testing.

Applications and Planning Guide

The WaveStar® ADM 16/1 Applications and Planning Guide (APG) isfor use by network planners, analysts and managers. It is also for useby the Lucent Account Team. It presents a detailed overview of thesystem, describes its applications, gives planning requirements,engineering rules, ordering information, and technical specifications.

User Operations Guide

The WaveStar® ADM 16/1 User Operations Guide (UOG) providesstep-by-step information for use in daily system operations. Themanual demonstrates how to perform system provisioning, operations,and administrative tasks by use of ITM Craft Interface Terminal(ITM-CIT).

Alarm Messages and Trouble Clearing Guide

The WaveStar® ADM 16/1 Alarm Messages and Trouble ClearingGuide (AMTCG) gives detailed information on each possible alarm

About this information product

....................................................................................................................................................................................................................................

x x v i Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

,

Page 139: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

message. Furthermore, it provides procedures for routine maintenance,troubleshooting, diagnostics, and component replacement.

WaveStar ® ITM-SC Provisioning Guide (Application WaveStar ®

ADM 16/1)

The WaveStar® ITM-SC Provisioning Guide (ApplicationWaveStar®

ADM 16/1) gives instructions on how to perform system provisioning,operations, and administrative tasks by use ofWaveStar® ITM-SC.

The following table lists the documents included in theWaveStar®

ADM 16/1 documentation set:

The following table lists the documents included in theWaveStar®

ADM 16/1 documentation set.

Table 1 WaveStar ® ADM 16/1 documentation set

Document title Document code

WaveStar® ADM 16/1 8.0 Applications and Planning Guide 109571158

(365-312-833)

WaveStar® ADM 16/1 8.0 User Operations Guide 109571208

(365-312-834)

WaveStar® ADM 16/1 8.0 Alarm Messages and Trouble Clearing Guide 109571141

(365-312-835)

WaveStar® ADM 16/1 8.0 Installation Guide Part I – Physical Installation 109571174

(365-312-836)

WaveStar® ADM 16/1 8.0 Installation Guide Part II – Commissioning andTest

109571182

(365-312-837)

WaveStar® ITM-SC Provisioning Guide (ApplicationWaveStar® ADM16/1)

109571190

(365-312-838)

CD-ROM DocumentationWaveStar® ADM 16/1 8.0 (all manuals on aCD-ROM)

109571166

(365-312-839)

Customer documentation that is subnetwork controller related

The following documents are Subnetwork Controller related:

• The WaveStar® ITM-SC Application and Planning Guideprovides an understanding of what theWaveStar® ITM-SC is andhow to use it.

• The WaveStar® ITM-SC Installation Guide instructs the user onhow to install theWaveStar® ITM-SC and how to configure therunning environment.

• The WaveStar® ITM-SC Administration Guide instructs the useron how to administer theWaveStar® ITM-SC.

• The WaveStar® ITM-SC Maintenance Guide instructs the user onhow to maintain theWaveStar® ITM-SC and the network.

About this information product

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005,

Lucent Technologies - ProprietarySee notice on first page

x x v i i

Page 140: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• The WaveStar® ITM-SC Provisioning Guide for the networkelement instructs the user on how to use theWaveStar® ITM-SCto provision network equipment.

• The WaveStar® ITM-SC Alarm Messages and Trouble ClearingGuide instructs the user on how to respond to alarms and how tofix problems with theWaveStar® ITM-SC.

Information productsupport

The document support telephone numbers are:

• 1 630 713 5000 (for all countries)

• 1 888 727 3615 (for the continental United States)

Technical support For technical support, contact your local customer support team.Reach them via the web (https://support.lucent.com/) or the telephonenumber listed under the Technical Assistance Center menu(http://www.lucent.com/contact/).

How to order To order Lucent Technologies information products, contact your localsales representative, use the following websites, or use the email,phone, and fax contacts linked from “Contact Us” on those sites:

• Documentation: http://www.lucentdocs.com (http://www.lucentdocs.com)

• Training: https://training.lucent.com/ (https://training.lucent.com/)

How to comment To comment on this information product, go to the Online CommentForm (http://www.lucent-info.com/comments/enus/) or email yourcomments to the Comments Hotline ([email protected]).

About this information product

....................................................................................................................................................................................................................................

x x v i i i Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

,

Page 141: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

1 Introduction

Overview....................................................................................................................................................................................................................................

Purpose This chapter briefly introduces theWaveStar® ADM 16/1 and its largevariety of applications.

ContentsThe WaveStar® ADM 16/1 system 1-2

Applications 1-3

Concise system description 1-4

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 - 1

Page 142: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The WaveStar® ADM 16/1 system....................................................................................................................................................................................................................................

Summary The WaveStar® ADM 16/1 is a high-capacity multiplexer andtransport system able to multiplex standard PDH and SDH bit rates toa higher level up to 2.5 Gbit/s (STM-16). Because of its wide range incapacity, this system is a useful element in building efficient andflexible networks.

The main strengths of the product are:

• Massive multiservice add/drop capacity: up to 504 × 1.5 Mbit/s,504 × 2 Mbit/s, 96 × STM-0, 96 × 34 Mbit/s, 96 × 45 Mbit/s,64 × 10/100BASE-T Ethernet, 18 × GbE interfaces (GigabitEthernet), 32 × STM-1, 32 × 140 Mbit/s or 8 × STM-4(possible to drop directly from the STM-16 level)

• Compact design

• Easy installation and maintenance

• Flexibility in applications and protection capabilities.

These features make theWaveStar® ADM 16/1 one of the mostcost-effective, future-proof and flexible network elements available onthe market today. Although the system has primarily been designed forSTM-16 applications, it can also be used in STM-4 and STM-1networks.

Various transmission protection mechanisms are supported by theWaveStar® ADM 16/1, such as:

• Multiplex Section Protection (MSP)

• Path protection or SNCP/N (sub network connection protectionwith non intrusive monitoring) for higher and lower order VCs

• Multiplex Section Shared Protection Ring or MS-SPRing atSTM-16 level

• Dual node interconnection (DNI) with drop and continue

Like all network elements of Lucent Technologies SDH productportfolio, theWaveStar® ADM 16/1 is managed by LucentTechnologiesNavis® Optical Management System (OMS), auser-friendly network and element-level management system.

The WaveStar® ADM 16/1 is a third-generation SDH transportsystem. This system can be deployed together with other LucentTechnologies 1st and 2nd generation SDH products, today and in thefuture. This makes theWaveStar® ADM 16/1 one of the mainbuilding blocks of today’s and future SDH networks.

Introduction

....................................................................................................................................................................................................................................

1 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 143: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Applications....................................................................................................................................................................................................................................

Summary The WaveStar® ADM 16/1 can be applied in all three tiers of anetwork: access, regional and backbone, although its main applicationscan be found at regional and backbone level. The system allows forgrowth and changing service needs by supporting in-serviceconversions and upgrades. Inherent to its basic design, the systemoperates equally well within fully synchronous as well asasynchronous environments and provides a flexible link between thetwo.

The WaveStar® ADM 16/1 supports a large variety of configurationsfor various network applications:

• STM-16, STM-4, STM-1 point-to-point (end) terminalconnections. Options are: 0×1 terminal with no line protection or1+1 MSP line-protected terminal

• STM-16, STM-4, STM-1 two fiber add/drop terminal in linearapplications and rings

• Hubbing functionality

• Small cross-connect

• Broadcasting functionality

• Payload concatenation:

– Virtual concatenation onTransLAN® Card

– Interconnecting ATM systems via VC-4-4c concatenation

• Tributary interface mixing

• Single ADM for interconnection of STM-16, STM-4 and STM-1rings (ring closure)

• Dual Node Interworking (DNI) with drop & continue

• SONET-SDH conversion and interworking

• Multi-service applications withTransLAN® Card.

Main applications of the system:

• Grooming of lower order traffic in a ring

• Path protected rings

• Ring closure network element

• ADM in MS-SPRing protected STM-16 rings.

Introduction

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 - 3

Page 144: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Concise system description....................................................................................................................................................................................................................................

Summary A big step forward in technology resulted in this very flexibleproduct. Because of the high level of integration at circuit pack level,it is possible to add/drop up to 504 × 1.5 Mbit/s, 504 × 2 Mbit/s, 96× 34 Mbit/s, 96 × STM-0, 96 × 45 Mbit/s, 64 × 10/100BASE-T(Ethernet and Fast Ethernet), 18 × GbE (Gigabit Ethernet), 32× STM-1, 32 × 140 Mbit/s or 8 × STM-4 signals using only onesubrack.

The WaveStar® ADM 16/1 is a multiplexer and transport system thatmultiplexes a broad range of plesiochronous and synchronous signalsinto 2.5 Gbit/s (STM-16), 622 Mbit/s (STM-4) or 155 Mbit/s(STM-1). The method used to map interface signals complies with theAU-4 mapping procedure specified by ITU-T. STM-1 and STM-4optical tributary boards also support AU-3 mapping for some interfacesignals.

The system can be used as an add/drop multiplexer, terminalmultiplexer or small local cross-connect (seeChapter 4, “Description”). It provides built-in cross-connect facilities and flexible interfacecircuit packs. Local and remote management and control facilities areprovided via the Q and F interfaces and the embedded communicationchannels (ECC). The cross-connect circuit pack is the core of theWaveStar® ADM 16/1 system.

Introduction

....................................................................................................................................................................................................................................

1 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 145: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

An outline of the basicWaveStar® ADM 16/1 architecture is given inthe figure below.

Cross-connect The cross-connect is the core of theWaveStar® ADM 16/1 system.The cross-connect circuit pack functionally consists of two parts: ahigher and a lower order cross-connect, although physically thecross-connect circuit pack is one single circuit pack.

The higher order cross-connect switches VC-4s and its capacity is 64× 64. Other functions of the higher order cross-connect are: VC-4SNC protection switching, MS-SPRing protection, MSP, equipmentprotection (seeChapter 2, “Features”for detailed explanations of thementioned protection mechanisms), non-intrusive monitoring of VC-4sand broadcasting.

The lower order cross-connect switches/grooms VC-3 and VC-12s andits capacity ranges up to 2016 × 2016 VC-12s equivalents or 32 × 32VC-4s. Other functions of the lower order cross-connect are: lowerorder SNCP, non-intrusive monitoring of lower order VCs and lowerorder broadcasting.

Tributary and line interfaces circuit packs are directly connected to thehigher order cross-connect via STM-1 equivalent signals.

Higher order and lower order cross-connect parts are interconnectedvia an internal cross-connect-bus of 32 bi-directional VC-4s wide. The

Figure 1-1 WaveStar ® ADM 16/1 basic architecture

Concise system description Introduction

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 - 5

Page 146: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

lower order cross-connect itself is uni-directional, although traffic isswitched/protected bi-directionally.

Higher Order VC-4s arriving from line or tributary circuit packs needonly to be routed through the lower order matrix, if the lower orderVC content needs to be groomed. Otherwise, the VC-4 can be routedthrough the higher order cross-connect only!

Flexible routing and cross-connecting of VC-4, VC-3 and VC-12between line port↔ line port, line port↔ tributary port and tributaryport ↔ tributary port is possible.

The system architecture makes it possible to use an interface circuitpack in almost any slot position, hence the system becomes veryflexible. A broad range of applications can be served with the sameshelf based on a common software platform.

To contribute to overall system reliability and availability, thecross-connect circuit pack can be 1 + 1 equipment protected by anaccompanying circuit pack.

Fixed cross-connect The fixed cross-connection unit replaces the (working) cross-connectunit to provide a 0:1 or 0:2 terminal configuration, in which the (16)VC-4s of four tributary units are routed towards one line port unit andthe (16) VC-4s of four other tributaries are routed towards the otherline port unit.

Interface circuit packs The WaveStar® ADM 16/1 supports a large variety of Interface circuitpacks: 1.5, 2, 34/45, 51.8, 140/155, 622 Mbit/s and 2.5 Gbit/s are thebit-rates that are supported. For Ethernet support tributary interfacesare available supporting 10/100BASE-T, 1000BASE-SX, and1000BASE-LX. If required, interface redundancy can be provided(excluding Ethernet interfaces). For details of these circuit packs,please refer to“Circuit packs” (4-9).

System control andnetwork management

The System Controller (SC) controls and provisions all circuit packsvia a local LAN bus. The SC also provides the external operationsinterfaces for office alarms, miscellaneous discrete inputs and outputsand connections to the overhead channels (a maximum of sixoverhead bytes may be selected to be connected to six connectors onthe interconnection panel.

The SC also facilitates first line maintenance by several LEDs andbuttons on the front panel. General status and alarm information isdisplayed. Various controls and an F interface connector, for a localmaintenance PC (ITM-CIT), are also located on this panel.

The SC communicates with the centralized management system(WaveStar® ITM-SC andNavis® Optical NMS). Communication is

Concise system description Introduction

....................................................................................................................................................................................................................................

1 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 147: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

established via so-called data communication channels (DCC =D1-3/D4-12 bytes), within the STM-N section overhead signals or viaone of the Q-interfaces of the system. Information destined for thelocal system is routed to the System Controller, while otherinformation is routed from the node via the appropriate embeddedchannels of the STM-N line or tributary signals.

The WaveStar® ITM-SC manages theWaveStar® ADM 16/1 at theelement level and theNavis® Optical NMS manages the system at theNetwork Level. The ITM-Craft interface terminal (ITM-CIT) can beused for managing single network elements and for maintenance.

Power and timing The WaveStar® ADM 16/1 can be equipped with one or two powerand timing circuit packs (PT). These power and timing circuit packsprovide power and timing to the system. To contribute to the overallsystem reliability and availability, the power and timing circuit packcan be 1 + 1equipment protected by an accompanying circuit pack.

Power A basic function of the PT circuit pack is to filter and stabilize theincoming station power to meet the necessary ETSI requirements. Thebasic power distribution philosophy throughout theWaveStar® ADM16/1 is to equip each circuit pack with on-board DC/DC convertersthat convert the secondary (station battery) voltage to the voltagesrequired for each circuit pack. The power feed from the station batteryvoltage is maintained duplicated throughout the system’s backplane.

Timing Another basic function of the PT is system timing. The localoscillator, also called the SDH Equipment Clock (SEC), can besynchronized to one of the user-selectable timing references. There aretwo types of PT circuit packs available: one so-called standard PTwith a standard holdover stability and one with a more accurateholdover stability frequency; Stratum-3 (see“Circuit packs” (4-9)infor more details).

Concise system description Introduction

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 - 7

Page 148: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 149: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

2 Features

Overview....................................................................................................................................................................................................................................

Purpose This chapter briefly describes the features and benefits of theWaveStar® ADM 16/1. These features are further described inChapter3, “Applications”, Chapter 4, “Description”andChapter 5,“Operations, administration, maintenance, and provisioning”asapplicable.

Standards compliance Lucent Technologies SDH products comply with the relevant SDHETSI and ITU-T standards. Important functions defined in SDHStandards such as the data communications Channel (DCC), theassociated 7-layer OSI protocol stack, the SDH multiplexing structureand the operations, administration, maintenance, and provisioning(OAM&P) functions are implemented in the Lucent Technologiesproduct family.

Jitter standards are also incorporated, guaranteeing a smoothinterworking between PDH and SDH based networks. The fullbenefits of the SDH Standards are provided while preserving theintegrity of the existing plesiochronous network.

Lucent Technologies is closely involved in various study groups withITU-T and ETSI that focus on creating and maintaining the latestglobal SDH standards. TheWaveStar® ADM 16/1 complies with allrelevant ETSI and ITU-T standards and is kept up to date accordingto the latest standards.

ContentsFeature overview 2-3

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 1

Page 150: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Protection mechanisms 2-5

Synchronization and timing 2-7

AU-3 / TU-3 conversion 2-9

Integrated optical booster and booster pre-amplifier 2-10

Remote maintenance, management and control 2-11

Installation practice 2-14

Ethernet over SDH 2-15

Virtual concatenation 2-24

Spanning tree protocol (STP) 2-30

GARP VLAN Registration Protocol (GVRP) 2-35

Ethernet over SDH applications 2-38

Operational modes 2-46

Tagging modes 2-57

Port provisioning 2-64

Quality of Service (QoS) overview 2-70

Classification, queueing and scheduling 2-74

Quality of Service provisioning 2-84

Performance monitoring 2-86

Overview Features

....................................................................................................................................................................................................................................

2 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 151: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Feature overview....................................................................................................................................................................................................................................

Main feature One of the main features of theWaveStar® ADM 16/1 is its ability toadd/drop and flexibly cross-connect 2 Mbit/s directly from theSTM-16 level. Other signals that can be add/dropped are: 1.5 Mbit/s(DS-1), 34 Mbit/s (E3), 45 Mbit/s (DS-3), 140 Mbit/s (E4) 51.8Mbit/s (STM-0), 155 Mbit/s (STM-1), 622 Mbit/S (STM-4),10/100BASE-T (Ethernet and Fast Ethernet), 1000BASE-SX and1000BASE-LX (Gigabit Ethernet).

Summary of the mainfeatures and benefits

Described in this chapter:

• Protection mechanisms supported: MS-SPRing, higher order &lower order SNC/N, MSP, Dual Node Interworking (DNI).

• Synchronization and timing:

– Support of ETSI synchronization message protocol (Timingmarker)

– Support of various synchronization modes, including 2Mbit/s tributary timing.

• AU-4 / TU-3 to AU-3 conversion on STM 1 and STM-4 opticalinterfaces

• Integrated optical booster and booster/pre-amplifier

• Remote maintenance and management by Lucent TechnologiesNavis® Optical Management System (WaveStar® ITM-SC andNavis® Optical NMS)

• Installation practice.

Described inChapter 3, “Applications”:

• STM-16, STM-4, STM-1 point-to-point (end) terminalconnections. Options are: 0x1 terminal with no line protectionand 1+1 MSP line-protected terminal

• STM-16, STM-4, STM-1 two fiber add/drop terminal in linearapplications and rings

• Hubbing functionality

• Small cross-connect

• Broadcasting functionality

• Payload concatenation:

– Virtual Concatenation onTransLAN® Card

– Interconnecting ATM systems via VC-4-4c concatenation

• Tributary interface mixing

• Single ADM for interconnection of STM-16, STM-4 and STM-1rings (ring closure)

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 3

Page 152: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• Dual Node Interworking (DNI) with drop & continue

• SONET-SDH conversion and interworking

• Multi-service applications withTransLAN® card.

Dual Node Interworking with drop and continue. Described inChapter4, “Description”:

• Equipment redundancy (all electrical interfaces, cross-connect,line port unit and power and timing unit).

• Maximum add/drop capacity per shelf.VC-4, VC-3 and VC-12Bi-directional cross-connect capability

• 0:1 and 0:2 terminal application with fixed cross-connect

• Full time slot assignment (TSA) for port interface signals andtime slot interchange (TSI) for through-channels

• Mixing/Grooming of various payload types.

Feature overview Features

....................................................................................................................................................................................................................................

2 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 153: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Protection mechanisms....................................................................................................................................................................................................................................

Transmission protection The WaveStar® ADM 16/1 provides the following types of networklevel automatic transmission protection:

• Point-to-point Multiplex Section Protection (MSP)A 1+1 MSP protection relation can be set up between a pair ofSTM-0 optical tributary interfaces. The applied protocol isaccording to ITU-T Recommendation G.841/Annex B, supportingnon-revertive operation with bi-directional control. A 1+1 MSPprotection relation can be set up between a pair of STM-1 orSTM-4 optical tributary interfaces. The applied protocol can beselected per interface according to G.841/clause 7 supporting:

– revertive and non-revertive operation

– uni-directional and bi-directional controlor to G.841/Annex B supporting:

– non-revertive operation

– bi-directional control.In addition, for these interface types interworking with SONETtype MSP is supported in non-revertive operation withuni-directional control.A 1+1 MSP protection relation can be set up between theSTM-16 aggregate interfaces. The applied protocol is accordingto G.841/clause 7. It supports both revertive and non-revertiveoperation and both uni-directional and bi-directional control.See alsoChapter 3, “Applications”.

• VC-n SNC/N protection switching.Sub-network connection protection switching is selectable per VCusing non-intrusive monitoring (SNC/N). This protectionswitching facility is non-revertive.The VC-n SNC protection scheme is in essence a 1+1point-to-point protection mechanism. The head end is dual fed(permanently bridged) and the tail end is switched. The switchingcriteria at the tail end are determined from the server layerdefects in combination with the non-intrusive monitoringinformation.SNC protection can be applied per individual VC-pair, for lowerorder VCs the total number of VCs that can be SNC protected islimited only by the lower order cross-connect size (SeeChapter5, “Operations, administration, maintenance, and provisioning”).SNC/N protects against:

– Server failures

– Open matrix connections (“unequipped signal”)

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 5

Page 154: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

– An excessive number of bit errors (signal degrade)

– Misconnections (trail trace identifier mismatch).

• Multiplex Section Shared Protection Ring protocol (MS-SPRing)In two fiber add/drop ring applications, the VC-4s on theSTM-16 ring can be protected by the MS-SPRing protectionmechanism. Rings protected by MS-SPRing can have amaximum of 16 nodes. Within STM-16 MS-SPRing, channel #1is protected by channel #9, #2 by #10, etc. up to #8 protected by#16. Each channel can be included in or excluded from theMS-SPRing protection mechanism. Access to the protectionchannel capacity for “extra, low-priority traffic” is supported.

• Dual Node Interworking (DNI) with drop and continue (D&C).The DNI with D&C scheme protects the interconnection betweentwo subnetworks within which the traffic is already protected bya network protection scheme. The advantage of using DNIprotection in a network is that there are no single point offailures anymore.DNI is supported in the following cases:

– between two MS-SPRing protected STM-16 rings.

– between a MS-SPRing STM-16 ring and a lower orderSNCP protected subnetwork.

From the Sapphire release and onwards, sub-networks withoutDNI protected interconnections can be upgraded in-service tohave DNI protected interconnections.

Cascaded protection The WaveStar® ADM 16/1 supports the cascading of two protectionschemes in one network element without needing multiple passesthrough cross-connects. The following schemes are cascadable:

• MS-SPRing or MSP on aggregates and MSP on tributaries.

• MS-SPRing or MSP on aggregates and LO-SNCP or HO-SNCP.

• Two identical VC-n SNCP sections.

• Two SNCP schemes on the same or different VC-n level.

Protection mechanisms Features

....................................................................................................................................................................................................................................

2 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 155: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Synchronization and timing....................................................................................................................................................................................................................................

Synchronizationconfigurations

Several synchronization configurations can be used, theWaveStar®

ADM 16/1 can be provisioned for:

• Free-running operation

• Hold-over mode

• Locked mode, internal SDH Equipment Clock (SEC) locked to:

– One of the external syncronization inputs (2048 kHz or 2048kbit/s)

– One of the 2 Mbit/s tributary signals

– One of the STM-N inputs (line or tributary port).

The user can select the external synchronization output to be locked toa suitable input signal independently of the selection made for theinternal oscillator.

Frequency offset handling By comparing the frequencies of all assigned references with thefrequencies of the internal oscillator on both timing units, it can bedecided, in case an excessive frequency difference is detected,whether a reference is off-frequency on the internal oscillator of oneof the timing units. In that case that unit is declared failed.

Timing referenceprotection

The external timing references are non-revertively 1+1 protected. Theexternal timing references can also operate unprotected.

Timing mode protection If the primary timing reference fails, the system will automaticallyswitch over to the holdover mode. The synchronization status messageis supported which enables timing reference priority settings and givesinformation about the timing-signal quality.

Synchronization statusmessage support

A timing marker or Synchronization Status Message (SSM) signal canbe used to transfer the signal quality level throughout a network. Thiswill guarantee that all network elements are always synchronized tothe highest quality clock available.

On theWaveStar® ADM 16/1 system the SSM algorithm or timingmarker is supported according to G.781. SSM is supported on allSTM-N interfaces and on the 2 Mbit/s synchronization output signal(connected to the station output clock).

2 Mbit/s tributary retiming The user can choose for individual 2 Mbit/s tributary outputs tooperate “self-timed” or “re-synchronized”. In the (standard) self-timedmode, the phase of the outgoing signal is a moving average of the

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 7

Page 156: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

phase of the 2 Mbit/s signal as it is embedded in the VC-12 that isdisassembled. In the re-synchronized mode the 2 Mbit/s signal istimed by the SDH Equipment Clock (SEC) of the network element;phase differences between the local clock and the 2 Mbit/s embeddedin the VC-12 to be disassembled are accommodated by a slip-buffer.

There is an option that whenever the traceability of the local clockdrops below a certain threshold; the re-timing 2 Mbit/s interfacesautomatically switch to self-timing and vice-versa when the failcondition disappears, without hits in the traffic.

Synchronization and timing Features

....................................................................................................................................................................................................................................

2 - 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 157: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

AU-3 / TU-3 conversion....................................................................................................................................................................................................................................

Summary Tributary circuit packs (SPIA-1E4/4B or SIA-1/4B) are available forsupporting the connection of STM-1 optical, AU-3 structured, signalsto theWaveStar® ADM 16/1 system. A maximum of four STM-1optical signals is supported per circuit pack.

Because the cross-connect supports AU-4 structured signals, atranslation from AU-3 to TU-3s needs to take place. This functionalityis located on the circuit pack. Besides AU-3 to TU-3 translating modethis tributary card can also operate in the AU-4 mode. The circuitpack fits into a single freely selectable tributary slot of the system.

This circuit pack can function in either mode, depending on the traffictype on the tributary interface (AU-3 or AU-4 based) and thecross-connect circuit pack.

A converter circuit pack (named SA-0/12) is available supportingconnection of STM-0 optical, AU-3 structured signals to AU-4structured signals needed by the cross-connect of theWaveStar®

ADM 16/1 system. A maximum of twelve STM-0 optical signals issupported per circuit pack.

Similar to the STM-1 optical tributary card also the STM-4 opticalcard supports AU-3 to TU-3s conversion. One STM-4 optical cardsupports one interface.

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 9

Page 158: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Integrated optical booster and booster pre-amplifier....................................................................................................................................................................................................................................

Ultra long distanceapplications

For ultra long distance applications (160 km per ITU-T G.692U-16.2/3) an optical booster and a pre-amplifier must be connected tothe STM-16 optical interface. For very long distance (120 km) abooster-only pack can be used. A combined optical booster andbooster pre-amplifier circuit pack uses one of the slots reserved forthe Interface circuit packs (seeChapter 8, “System planning andengineering”).

Features

....................................................................................................................................................................................................................................

2 - 1 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 159: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Remote maintenance, management and control....................................................................................................................................................................................................................................

Lucent TechnologiesNavis ® Optical

Management two-tiermaintenance

The WaveStar® ADM 16/1 maintenance procedures are built on twolevels of system information and control.

First tier The first maintenance tier consists of the user panel display (LEDs)and push buttons (all on the front of the system controller), and thecircuit pack faceplate light-emitting diodes (LEDs). These allow mosttypical maintenance tasks to be performed without the ITM-CraftInterface Terminal (ITM-CIT) or element manager (WaveStar®

ITM-SC).

Second tier The second maintenance tier employs Lucent Technologies’Navis®

Optical Management System (OMS). Detailed information and systemcontrol are obtained by using the ITM-CIT (Craft Interface Terminal),which supports provisioning, maintenance and configuration on a localbasis. A similar facility is (via a Q-LAN connection or via the DCCchannels) remotely available on the element manager, theWaveStar®

ITM-SC, which provides a centralized maintenance view and supportsmaintenance activities from a central location.

At network level (customer’s network management center), LucentTechnologies’Navis® Optical Management System system performsall the tasks necessary to supervise, operate, control and maintain anSDH network with theWaveStar® ADM 16/1.

Operations interfaces The WaveStar® ADM 16/1 Multiplexer System offers a wide range ofoperations interfaces to meet the needs of an evolving operationssystem (OS) network. The operation interfaces include:

• Office alarm interfaces:This interface provides a set of discrete relays that control officeaudible and visible alarms.

• User-settable miscellaneous discrete interfaces:This interface provides 8 user-selectable miscellaneous discreteinputs and 4 control outputs. These miscellaneous discrete inputsand outputs can be used to read the status of external alarmpoints and to drive external devices.

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 1 1

Page 160: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• Two local workstation F interfaces:Two F interfaces are provided, one at the front (on the faceplateof the SC) and one at the rear of theWaveStar® ADM 16/1.These interfaces provide operation access for a PC-basedworkstation also known as a Craft Interface Terminal (ITM-CIT).It can be operated by a crafts person working in front of thesystem or at the rear, but not at the same time.

• Q interfacesThe Q interfaces enable network-oriented communicationbetweenWaveStar® ADM 16/1 systems and the element /network Manager. This interface uses a Qx interface protocolcompliant with ITU-T recommendation G.773-CLNS1 to providethe capability for remote management via the datacommunication channels (DCC).Two types of Q interface are available:

– Q LAN 10 base T (twisted pair Ethernet, for twisted paircables)

– Q LAN 10 base 2 (thin Ethernet or CheaperNet, for 2coaxial cables)

Single-ended operationsby WaveStar ® ITM-SC

The WaveStar® ITM-SC Element Manager provides single-endedoperations capability by remotely accessing all theWaveStar® ADM16/1 systems in a network from a single location. Operation,administration, maintenance, and provisioning can be performed on acentralized location.

Local and remote softwareupgrades

The WaveStar® ADM 16/1 System provides the capability to upgradethe system software in service without requiring any control circuitpack changes. The system monitoring and control are fully functionalduring the software download. Software is downloaded locally usingthe local ITM-CIT or remotely from the element manager via the DataCommunication Channel (DCC).

Local and remoteinventory capabilities

The WaveStar® ADM 16/1 System provides automatic versionrecognition of all hardware and software installed in the system.Circuit pack types and circuit pack codes (“comcodes”) are accessiblevia the local ITM-CIT or via theWaveStar® ITM-SC ElementManager. This greatly simplifies troubleshooting, dispatch decisions,and inventory audits.

This also includes information on the NE release.

Remote maintenance, management andcontrol

Features

....................................................................................................................................................................................................................................

2 - 1 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 161: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

SFP inventory data For the optical plugggable modules, the SFPs (Small Form-factorPluggables) the following inventory data can be retrieved:

• Physical Identifier

• Connector Type

• Transceiver Code

• Link Type

• Max Link Length

• Vendor Name

• Vendor IEEE Organisational Unique Identifier (OUI)

• Part Number

• Revision Number

• Vendor Serial Number

• Comcode Lucent

• Unique ID Compatibility

• Warranty Eligibility System (WES) SFP Vendor ID

These inventory data can be retrieved via ITM-CIT orWaveStar®

ITM-SC.

This feature is only supported by the system controller SC2.

Remote maintenance, management andcontrol

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 1 3

Page 162: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Installation practice....................................................................................................................................................................................................................................

Summary The WaveStar® ADM 16/1 is housed in a self-supporting single-rowshelf to fit in standard ETSI racks of 600 mm depth and width. Amaximum twoWaveStar® ADM 16/1 shelves fit in one 2200 mmhigh ETSI rack cabinet (H × W × D = 2200 × 600 × 600 mm),2600 mm high ETSI rack cabinet (H × W × D = 2600 × 600 × 600)or 2000 mm earthquake-proof rack cabinet (H × W × D = 2000× 600 × 600). The dimensions of theWaveStar® ADM 16/1 shelfare: 750 × 500 × 545 (H × W × D) mm.

Installation restrictions can be found inChapter 7, “Physical design”.

Features

....................................................................................................................................................................................................................................

2 - 1 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 163: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ethernet over SDH....................................................................................................................................................................................................................................

Introduction To connect remote PC LAN network sites via an SDH networkwithout the need for intermediate bridges or routers, theWaveStar®

ADM 16/1Metropolis® AM / Metropolis® AMS network element isequipped with the Ethernet Interface extension card. The EthernetInterface extension card can be a Fast Ethernet card or a GigabitEthernet card.

The following figure visualizes the basic design of aTransLAN®

card:

Legend:

A The external interfaces, to which theend-customer’s Ethernet LANs are physicallyconnected.

Cross-connection unit

PHY PHY PHY PHY

LAN ports

WAN ports

Virtual concatenation

Encapsulation and mapping

Ethernet switchL2

A

B

C

D

Physical interface

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 1 5

Page 164: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

B The interface between the Ethernet physicalinterface port and the Ethernet switch. Theinternal interfaces of the Ethernet switch towardsthe Ethernet physical interface port are referred toas “LAN ports”. Note that two types of LANports can be differentiated according to their portrole: “customer LAN ports” and “network LANports” (cf. “Port provisioning” (2-64)).

C The internal interface between the Ethernet switchand the encapsulation and mapping function. Theinternal interfaces of the Ethernet switch towardsthe encapsulation and mapping function arereferred to as “WAN ports”. Note that two typesof WAN ports can be differentiated according totheir port role: “network WAN ports” and“customer WAN ports” (cf.“Port provisioning”(2-64)).

D The interface between the encapsulation andmapping function and the cross-connect functionof the network element. This is were the virtuallyconcatenated payload is cross-connected to betransported over the SDH network.

The TransLAN® implementations use standardized protocols totransport Ethernet frames over the SDH network. The Ethernet overSDH (EoS) method and the generic framing procedure (GFP) are usedto encapsulate the Ethernet frames into the SDH transmission payload.Virtual concatenation and LCAS are used to allocate a flexible amountof WAN bandwidth for the transport of Ethernet frames as needed forthe end-user’s application.

Physical interfaces The physical interface function provides the connection to theEthernet network of the end-customer. It performs autonegotiation,and carries out flow control.

The following physical interfaces are enabled on Lucent TechnologiesTransLAN® cards:

• 10BASE-T

• 100BASE-TX

• 1000BASE-SX

• 1000BASE-LX

• 1000BASE-ZX

Ethernet over SDH Features

....................................................................................................................................................................................................................................

2 - 1 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 165: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Important! It is recommended not to use flow control for1000BASE-LX and 1000BASE-ZX interfaces located on theLKA12/LAK12B unit.

The supported LAN interfaces for Ethernet and Fast Ethernetapplications are 10BASE-T and 100BASE-TX. The numbers “10” and“100” indicate the bitrate of the LAN, 10 Mbit/s ( Ethernet) and 100Mbit/s (Fast Ethernet) respectively. The “T” or “TX” indicates thewiring and the connector type: Twisted pair wiring with RJ-45connectors.

The supported LAN interfaces for Gigabit Ethernet applications are1000BASE-SX, 1000BASE-LX, and 1000BASE-ZX. Again, thenumber indicates the bitrate of the LAN, 1 Gbit/s (Gigabit Ethernet).“SX” indicates a short-haul interface, “LX” and “ZX” indicate along-haul interface.

Ethernet switch The Ethernet switch connects the LAN ports with the WAN ports. Itperforms learning, filtering and forwarding according to the IEEE802.1D standard.

The physical Ethernet switch can be logically split in multiple,independent switches or port groups, called “virtual switch”. In thetransparent tagging modes (LAN interconnect, LAN-VPN), also thename “LAN group” is used instead of “virtual switch”.

The following applies to port groups or virtual switches, respectively:

• A virtual switch defines a spanning tree domain, and can beassigned a mode of operation (LAN interconnect or LAN-VPN).

• A virtual switch includes any number (at least 2) of externalEthernet LAN ports and/or internal WAN ports associated with aVC-n-Xv payload.

• Traffic betweenvirtual switches isnot possible.

• Each port can be a member of only one virtual switch at a time.

• A VLAN must have all its port members inside a single virtualswitch.

Ethernet over SDH Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 1 7

Page 166: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

In the following example, a virtual switch is provisioned that connects2 LAN ports with 1 WAN port:

Ethernet encapsulationwith GFP

The generic framing procedure (GFP) is used to adapt theasynchronous Ethernet payload to the synchronous SDH server layer.

A GFP-header (8 octets) is prepended to each Ethernet frame toindicate frame length and payload type. Gaps between Ethernet framesare filled with “IDLE” frames (4 octets each).

GFP, standardized by the ITU-T in the recommendations G.7041 andY.1303, is a very efficient encapsulation protocol because it has afixed and small overhead per packet.

In earlier versions (prior to the Garnet network release of June 2002)of the TransLAN® equipment, the Ethernet over SDH (EoS)encapsulation and mapping method is used for VC-12 and/or VC-3based designs (10/100BASE-T Ethernet / Fast Ethernet cards). EoS isa proprietary encapsulation protocol, based on the ANSIT1X1.5/99-268r1 standard, and can be regarded as a precursor ofGFP. EoS and GFP are both length-based encapsulation methods. EoSis similar to GFP in terms of frame delineation and mapping (incl.scrambling); differences between the two encapsulation methods lie in

LAN

LAN

SDH transportnetwork

Virtual switch

LANports

WANports

TransLAN physicalEthernet switch

IDLE GFPHEADER Ethernet frame IDLE IDLE GFP

HEADER

GFPHEADER Ethernet frame IDLE IDLEEthernet frame

Ethernet over SDH Features

....................................................................................................................................................................................................................................

2 - 1 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 167: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

the size and interpretation of the EoS/GFP encapsulation core headers,as well as the length of the Idle frames.

The generic framing procedure, framed mode (GFP-F) compliant tothe ITU-T Rec. G.7041 is available on allTransLAN® products sincethe Garnet Maintenance / Mercury network release of January 2003.

The following GFP encapsulation are possible:

• Mapping of Ethernet MAC frames into Lower Order SDHVC12–Xv

• Mapping of Ethernet MAC frames into Lower Order SDHVC3–Xv

• Mapping of Ethernet MAC frames into Higher Order SDHVC4–Xv.

VC12–Xv GFP encapsulation

The WaveStar® ADM 16/1 supports virtual concatenation of LowerOrder SDH VC-12 as inverse multiplexing technique to size thebandwidth of a single internal WAN port for transport of encapsulatedEthernet and Fast Ethernet packets over the SDH/SONET network.This is noted VC12-Xv, where X = 1...5. Usage is in conformancewith ITU-T G.707 Clause 11 (2000 Edition) and G.783 Clause 12.5(2000).

This feature implies specific processing of some overhead bytes:

• Source direction: Each individual VC-12 (from the VC12-Xvgroup) K4-byte (bit 1-2 multiframed) will be written to indicatethe values of the multiframe indicator (timestamping), as well asthe sequence indicator (individual VC-12 position inside aVC12-Xv)

• Sink direction: Each individual VC-12 (from the VC12-Xvgroup) K4-byte (bit 1-2 multiframed) multi-framing indicator andsequence indicator is used to check that the differential delaybetween the individual VC-12s of the VC12-Xv remains withinimplementation limits.

Additionally, the use of G.707 Extended Signal Label is supportedusing V5(bits 5-7) field, in which the “101” value is written, whichpoints to the appropriate bits of K4(bit 1) multiframe for writing inthe Extended Signal Label value.

VC3–Xv GFP encapsulation

The WaveStar® ADM 16/1 supports virtual concatenation of LowerOrder SDH VC-3 as inverse multiplexing technique to size thebandwidth of a single internal WAN port for transport of encapsulatedEthernet and Fast Ethernet packets over the SDH/SONET network.This is noted VC3–Xv, where X = 1,2 (SDH). Usage is in

Ethernet over SDH Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 1 9

Page 168: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

conformance with ITU-T G.707 Clause 11 (2000 Edition) and G.783Clause 12.5 (2000) and T1X1 T1.105 Clause 7.3.2 (2001 Edition).

This feature implies specific processing of some overhead bytes:

• Source direction; each individual VC-3 (from the VC3–Xv group)H4-byte will be written to indicate the values of the two-stage-multiframe indicator (timestamping), as well as the sequenceindicator (individual VC-3 position inside a VC3–Xv)

• Sink direction; each individual VC-3 (from the VC3–Xv group)H4-byte two-stage-multi-framing indicator and sequence indicatoris used to check that the differential delay between the individualVC-3 of the VC3–Xv remains within implementation limits.

Important! Manual/Auto provisioning of encapsulation schemeson GbE for VC3 does not always work seamlessly. Switchingbetween Manual and Auto provisioning of GFP and EoSencapsulation scheme might sometimes get stuck. This can e.g.happen when configuring back from a GFP scheme to EoS onone side only.

Work around:Delete and re-create the correspondingcrossconnection.

VC4–Xv GFP encapsulation

The WaveStar® ADM 16/1 supports virtual concatenation of HigherOrder SDH VC-4 as inverse multiplexing technique to size thebandwidth of a single internal WAN port for transport of encapsulatedGigabit Ethernet packets over the SDH/SONET network. This is notedVC4/STS3c-Xv, where X = 1...4.

Usage is in conformance with ITU-T G.707 Clause 11 (2000 Edition)and G.783 Clause 12.5 (2000) and T1X1 T1.105 Clause 7.3.2 (2001Edition).

This feature implies specific processing of some overhead bytes:

• Source direction; each individual VC-4 (from theVC4–Xv/STS3c-Xv group) H4-byte will be written to indicatethe values of the two-stage multiframe indicator (timestamping),as well as the sequence indicator (individual VC-4 position insidea VC4/STS3x-Xv group).

• Sink direction; each individual VC-4 (from the VC4/STS3c-Xvgroup) H4-byte two-stage-multi-framing indicator and sequenceindicator is used to check That the differential delay between theindividual VC-4 of the VC-4/STS3c-Xv remains withinimplementation limits.

Ethernet over SDH Features

....................................................................................................................................................................................................................................

2 - 2 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 169: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Virtual concatenation The virtual concatenation function arranges the Ethernet frames intothe right SDH virtual container. It is possible to map the client’s datasignal over a number of grouped virtual containers.

Related information

Please refer to“Virtual concatenation” (2-24)for more detailedinformation.

LAN and WAN ports andVLAN

A VLAN can contain multiple LAN ports and multiple WAN ports.

Multiple LAN ports can be assigned to different VLANs, alsomentioned as Virtual LAN’s. This keeps the traffic on each VLANtotally separate. VLAN groups are used to connect LAN ports andWAN ports. The LAN ports are the physical 10BaseT or 100BaseT orgigabit Ethernet ports on the NE. All valid Ethernet packets areaccepted (both Ethernet 2 and IEEE 802.3). The WAN ports are thelogical connection points to the SDH channels. The LAN port is theinterface between the customers Ethernet LAN and the Ethernetswitch on the LAN unit. The WAN port is the internal port betweenthe Ethernet switch and the part of the LAN unit where the Ethernetframe is mapped into or de-mapped from SDH payloads.

VLAN trunking VLAN trunks carry the traffic of multiple VLANs over one singleEthernet link and allow handling off aggregated LAN traffic frommultiple end users via one single high capacity Ethernet link (FastEthernet or Giga Ethernet) to data equipment in a Central Office or anIP Edge Router, IP Service Switch or an ATM Switch. The mainbenefit of VLAN trunking is that TransLAN cards can hand off enduser LAN traffic via one high capacity LAN port instead of multiplelow speed LAN ports.

Advantages of VLAN trunking are:

• it does not require the assignment of CID tags

• it permits different 802.1 tagged frames to share the samephysical LAN port

Ethernet over SDH Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 2 1

Page 170: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• it gives additional flexibility for egress logical WAN portassignment

• it permits successfully routing via an aggregation function.

Learning bridges To increases the efficiency of the network, it can be separated intosegments. A bridge, which may have several parts, passes packetsbetween multiple network segments. By noting at which port anEthernet packet with a certain source address arrives, the bridge learnsto which ports a packet with a certain destination address must besent. If the port does not know the destination address, then it willsend it to all the ports except the port where it comes from. The tableswhich the learning bridge uses to pass the Ethernet packets to its portsare not shown to the user by the management systems.

MAC-Bridges perform automatic address learning based on the sourceMAC-address present in each frame.

• In this process an unknown SA of a frame is stored together withthe port number over which the frame entered the Bridge to beused when frames with that DA need to be forwarded

• Addresses that are not refreshed (relearned) within the so-calledMAC address ageing time, are removed.

In case more different source address than there is memory space arepassing in an specific interval, the MAC address ageing time,addresses are prematurely flushed and possibly need to be re-learned

The MAC address ageing time is not stable. Ageing time can varybetween 240s up to 420s.

This causes some excess traffic as unlearned traffic is broadcasted.Too much unlearned traffic can also affect the learned traffic (becauseof the broadcasting).

Example

Ethernet over SDH Features

....................................................................................................................................................................................................................................

2 - 2 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 171: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

After the bridge has received a packet from station C it knows thatstation C is attached to port 2. When the bridge knows to which portsa station is attached, it will send packets with destination addresses ofthese stations only to the port the station is attached to (e.g. a packetfrom station B to station C is only forwarded to port 2). When adestination address of a packet is of a station in its own segment, thepacket is not forwarded by the bridge (e.g. a packet from station D tostation E).

Quality of service Refer to“Quality of Service (QoS) overview” (2-70).

Ethernet over SDH Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 2 3

Page 172: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Virtual concatenation....................................................................................................................................................................................................................................

The SDH granularityproblem

The virtual containers of the SDH have fixed sizes. These virtualcontainers are important for the transport of Ethernet frames over theSDH network:

• VC-12: 2 Mbit/s

• VC-3: 50 Mbit/s

• VC-4: 150 Mbit/s

It is difficult to fit the Ethernet traffic into one of these virtualcontainers. For many applications the containers, or contiguouslyconcatenated virtual containers, such as VC-4-4C (600 Mbit/s) forexample, are either too small or too big. This is known as thegranularity problem.

Virtual concatenation is a mechanism by which a number ofindependent VCs can be used to carry a single payload. This way, thegranularity problem is solved.

The following table shows the possible payload sizes, and the virtualcontainers that are used for the transport.

Payload Virtual containers Concatenation

2 Mbit/s 1 × VC-12 VC-12

4 Mbit/s 2 × VC-12 VC-12-2v

6 Mbit/s 3 × VC-12 VC-12-3v

8 Mbit/s 4 × VC-12 VC-12-4v

10 Mbit/s 5 × VC-12 VC-12-5v

50 Mbit/s 1 × VC-3 VC-3

100 Mbit/s 2 × VC-3 VC-3-2v

150 Mbit/s 1 × VC-4 VC-4

300 Mbit/s 2 × VC-4 VC-4-2v

450 Mbit/s 3 × VC-4 VC-4-3v

600 Mbit/s 4 × VC-4 VC-4-4v

750 Mbit/s 5 × VC-4 VC-4-5v

900 Mbit/s 6 × VC-4 VC-4-6v

1 Gbit/s 7 × VC-4 VC-4-7v

Virtual concatenation Virtual concatenation can be used for the transport of payloads that donot fit efficiently into the standard set of virtual containers (VCs).

Virtual concatenation splits the contiguous bandwidth into individualVCs, transports these VCs separately over the SDH network, and

Features

....................................................................................................................................................................................................................................

2 - 2 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 173: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

recombines them to a contiguous signal at the path termination. Animportant aspect of virtual concatenation is that itonly needs to besupported at the end nodes(i.e. at theTransLAN® cards that interfacewith the end-customer’s LAN). The rest of the network simplytransports the separate channels.

Example 1

As an example, the following figure shows the virtual concatenationof 5 × VC-12:

The 10 Mbit/s payload is put into a VC-12–5v, i.e. into a virtualconcatenation group (VCG) consisting of 5 virtually concatenatedVC-12s. These VC-12s can travel the network independently, and donot have to follow the same route. At the endpoint, the VC-12–5v isreassembled, and the payload is extracted.

Example 2

The second example shows the principle of virtual concatenation in aGigabit Ethernet (GbE) network application. Protection of the virtually

VC-12-5v

10 Mbit/sEthernet payload

VC-12 VC-12 VC-12VC-12VC-12

VC-12 VC-12 VC-12VC-12VC-12

VC-12-5v

10 Mbit/sEthernet payload

0 1 2 3 4

0 1 2 3 4

Virtual concatenation Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 2 5

Page 174: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

concatenated payload is possible via standard SDH transmissionprotection schemes.

Differential delay

Due to the different propagation delay of the VCs a differential delayoccurs between the individual VCs. This differential delay has to becompensated and the individual VCs have to be re-aligned for accessto the contiguous payload area.

The TransLAN® re-alignment process covers at least a differentialdelay of 32 ms.

Link Capacity AdjustmentScheme (LCAS)

LCAS is an extension of virtual concatenation that allows dynamicchanges in the number of channels in a connection. In case channelsare added or removed by management actions this will happenwithout loosing any customer traffic.

LCAS allows a bandwidth service with scalable throughput in normaloperation mode. In case of failure the connection will not be droppedcompletely but only the affected channel(s). The remaining channelswill continue carrying traffic. LCAS provides automatic decrease ofbandwidth in case of link failure and re-establishment after linkrecovery.

In case only one end supports (or has turned on) the LCAS protocol,the side that does support LCAS adapts automatically to therestrictions that are dictated by the non-supporting end, i.e. the entirelink behaves as a link that does not support in-service bandwidthadaptations.

Bandwidth allocation (GbE) Unlike the TransLan+ and M-LAN cards the GbE unit has a fullyflexible internal cross connect. This means that it is impossible tosimply request bandwidth. For the GbE card the user selects whichVCs to add to the SDH Channel/VCG. In addition the user has theoption of substructuring the VC4s into VC3s thus giving additionalflexibility as in the other Ethernet cards the substructuring was fixed.The user may select from the following SDH Rates: VC3, VC3-2v,VC4-1v, VC4-2v, VC4-3v and VC4-4v. This gives a range from 50Mbps to 600 Mbps.

LAN LANWAN WAN

Network element Network element

Ethernetframe

EthernetframeVC-4-7v VC-4-7v

Virtual concatenation Features

....................................................................................................................................................................................................................................

2 - 2 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 175: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Dynamic bandwidthadjustment (GbE)

One of the major problems with using Virtual Concatenation is that ifone of the VCs has a fault and fails the whole signal fails. This meansthat if a single VC fails the entire SDH Channel/VCG is lost. TheGbE card for theWaveStar® ADM 16/1 network element supports theLink Capacity Adjustment Scheme (LCAS). This LCAS allowsdynamic bandwidth increase or decrease without loss of signal.Furthermore, if the signal of one or more of the components becomesdegraded then LCAS will autonomously remove those VCs from thegroup. When the failure is repaired LCAS will automatically returnthose component VCs to the SDH Channel/VCG.

The following table indicates the effect LCAS has on the transmissioncapacity:

Enabling/disablingLCAS

Capacity no VC-nfailures

One or more (but notall) VC-ns failures

All VC-ns fail.

LCAS disabled Working Capacity =Provisioned Capacity

Working Capacity = 0 Working Capacity = 0

LCAS enabled Working Capacity =Provisioned Capacity

Working Capacity isreduced by amount offailed VC-ns servicedegraded.

Working Capacity = 0

With the introduction of LCAS for VC4-Xv an additional attribute“SDHWorkingCapacity” is needed. The working capacity shows thevalue of the actual capacity available, this allows the operator to seewhen service is degraded. The working capacity will also be displayedfor non-LCAS, showing a zero if the signal is degraded on any VC-n.When LCAS is enabled Working Capacity show a zero only when thesignal is fully degraded. The next three figures depict the effect ofLCAS.

Virtual concatenation Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 2 7

Page 176: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Non-degraded service

Non LCAS causing degraded service

Virtual concatenation Features

....................................................................................................................................................................................................................................

2 - 2 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 177: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

With LCAS enabled only signal degradation is caused

VC allocation (GbE) There are 4 x VC-4 TTPs on the GbE card. Each of these can besubstructured to VC-3 TTPs or used as VC-4 TTPs. When theoperator requests an SDH Channel/VCG he has a choice of variouscapacities from a single VC-3 (50 Mbit/s) up to VC-4-4v (600Mbit/s). If the operator requires a bandwidth of say 100 Mbit/s, one ofthe VC-4 TTPs must be adapted into VC-3 TTPs, and two of thesewill be virtually concatenated as a VC-3-2v. For the next SDHChannel/VCG the operator will then only have a maximum bandwidthof 450 Mbit/s (VC-4-3v) as this is what is still available.

Virtual concatenation Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 2 9

Page 178: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Spanning tree protocol (STP)....................................................................................................................................................................................................................................

Overview The spanning tree protocol (STP) is a standard Ethernet method foreliminating loops and providing alternate routes for service protection.Standard STP depends on information sharing among Ethernetswitches/bridges to reconfigure the spanning tree in the event of afailure. The STP algorithm calculates the best loop-free paththroughout the network.

STP defines a tree that spans all switches in the network; it e.g. usesthe capacity of available bandwidth on a link (path cost) to find theoptimum tree. It forces redundant links into a standby (blocked) state.If a link fails or if a STP path cost changes the STP algorithmreconfigures the spanning tree topology and may reestablishpreviously blocked links. The STP also determines one switch thatwill be the root switch; all leaves in the spanning tree extend from theroot switch.

Maximum bridge diameter The maximum bridge diameter is the maximum number of bridgesbetween any two hosts on the bridged LAN for any spanning treeconfiguration.

For TransLAN® applications the maximum bridge diameter is 25nodes.

Spanning tree example The following example network serves to illustrate the principle howa spanning tree is constructed.

LAN

1a 3a

3b

3c

1c

1b

2c 2b

2a

Switch 1

Switch 2

Switch 3

LAN

LAN

Features

....................................................................................................................................................................................................................................

2 - 3 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 179: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Determination of the root

For every switch a priority can be configured. The switch priority is anumber between 0 (highest priority) and 61440 (lowest priority) insteps of 4096. The switch with the highest priority will become root.

If there are two or more switches with the same highest priority, thenthe switch with the lowest number for the MAC address will becomeroot. This rule ensures that there is always exactly one root, as MACaddresses are unique.

Determination of the root ports

Root ports are those ports that will be used to reach the root. For eachswitch the port with the lowest root path cost is chosen, where the

LAN

1a

Root

3a

3b

3c

1c

1b

2c 2b

2a

Switch 1

Switch 2

Switch 3

LAN

LAN

Priority: 28072 Priority: 32768

Priority: 32768

Spanning tree protocol (STP) Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 3 1

Page 180: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

root path cost is determined by adding the path costs to the root. Inthe example port 2b and 3b are root ports.

For every port a path cost value can be configured. For E/FETransLAN® cards, the default value of the path cost is determined bydividing 20,000,000,000 by the bandwidth in kbit/s. For GbETransLAN® cards, the path cost is a means to influence the activenetwork topology.

Determination of the designated and blocked ports

The designated port is the one port that is going to be used for acertain LAN. In the example, there are 6 LANs.

The designated ports for LAN 1, LAN 2 and LAN 3 are the ports 1a,2a and 3a respectively, because these LANs have only one connectionto a switch. If there are more connections to a switch, then the port

LAN

1aPath cost

Path costPath cost

Root

3a

3b

3c

1c

1b

2c 2b

2a

Switch 1

Switch 2

Switch 3

LAN

LAN

r

r

60000

10000

25000

Spanning tree protocol (STP) Features

....................................................................................................................................................................................................................................

2 - 3 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 181: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

with the lowest root path cost is chosen. Thus the designated ports forLAN 4, LAN 5 and LAN 6 are the ports 1b, 1c and 3c respectively.

Ports that are neither root ports nor designated ports are blocked. Inthe example port 2c is a blocked port.

Thus the loop free spanning tree is constructed.

Rapid spanning treeprotocol (rSTP)

The rapid spanning tree protocol reduces the time that the standardspanning tree protocol needs to reconfigure after network failures.Instead of several tens of seconds, rSTP can reconfigure in less than asecond. The actual reconfiguration time depends on severalparameters, the two most prominent are the network size andcomplexity. IEEE802.1w describes the standard implementation forrSTP.

For the special case of multiple cross-connection switches in betweenthe last 60 seconds, a filtering function concerning STP notification isimplemented. This repetition filter modifies the hold-off time forrecalculation of the STP.

Specific attributes forTransLAN® STP enhancements:

• Failure Detection - Use SDH-layer failure detection to triggerSTP reconfiguration.

• Convergence Time - Key aspects of the message-based IEEE802.1w/D10 (rSTP) protocol instead of timer-based 802.1D (STP)protocol.

LAN 1

1a

Root

3a

3b

3c

1c

1b

2c 2b

2a

Switch 1

Switch 2

Switch 3

LAN 3

LAN 4 LAN 5

LAN 6

LAN 2

x

r

r

d

d

d

d

d

d

Spanning tree protocol (STP) Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 3 3

Page 182: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• Support larger network diameter by adjusting the “Maximum AgeTimer” parameter and enhanced STP configuration controls andreports.

• Automatic mode detection - The rSTP is supported as anenhancement to STP, it cannot be enabled explicitly. It rather willoperate by default and will fall back to STP as soon as it findspeer nodes that do not support rSTP. The STP mode that thebridge elected can be retrieved per port.

Spanning tree protocol (STP) Features

....................................................................................................................................................................................................................................

2 - 3 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 183: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

GARP VLAN Registration Protocol (GVRP)....................................................................................................................................................................................................................................

Automatic configuration ofVLANs

The GARP VLAN Registration Protocol (GVRP) is a protocol thatsimplifies VLAN assignment on network-role ports and ensuresconsistency among switches in a network.

GVRP is supported only in the IEEE 802.1Q / IEEE 802.1ad VLANtagging modes. In the transparent tagging modes (VPN taggingmodes), a similar protocol, the proprietary spanning tree with VPNregistration protocol (STVRP) is supported. STVRP is enabled perdefault and cannot be disabled.

By using GVRP, VLAN identifiers (VLAN IDs) only need to beprovisioned on customer-role ports of access nodes. VLAN IDs onnetwork-role ports of intermediate and access nodes are automaticallyconfigured by means of GVRP. The provisioned VLAN IDs oncustomer-role ports are called static VLAN entries; the VLANsassigned by GVRP are called dynamic VLAN entries. In addition,GVRP prevents unnecessary broadcasting of Ethernet frames byforwarding VLAN frames only to those parts of the network that havecustomer-role ports with that VLAN ID. Thus, the traffic of a VLANis limited to the STP branches that are actually connecting the VLANmembers.

Legend:

1 Static VLAN IDs need to be entered manually atcustomer-role ports.

2 Dynamic VLAN IDs of intermediate and access nodesare automatically configured.

A

B C

DE

➀➁

➁LAN

LAN

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 3 5

Page 184: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

3 No automatic configuration of VLAN IDs on portstowards those access nodes where the respective VLANID is not provisioned, i.e. no unnecessary broadcastingof Ethernet frames by forwarding VLAN frames only tothose parts of the network that have customer-role portswith that VLAN ID.

Note that GVRP and the spanning tree protocol (STP) interact witheach other. After a stable spanning tree is determined (at initializationor after a reconfiguration due to a failure) the GVRP protocolrecomputes the best VLAN assignments on all network-role ports,given the new spanning tree topology.

GVRP can be enabled (default setting) or disabled per virtual switch.However, all virtual switches on an Ethernet network need to be inthe same GVRP mode. For interworking flexibility one can optionallydisable STP per network-role port; implicitly GVRP is then disabledas well on that port. GVRP must be disabled in order to interworkwith nodes that do not support GVRP.

Max. number of VLANs The maximum supported number of active VLANs (VLANidentifiers) is limited for reasons of controller performance, and variesdepending on product, tagging mode and GVRP activation status. Thefollowing table shows the applicable values. Note that even if themaximum number of active VLANs is limited to 64, 247, or 1024,VLAN identifiers out of the full range of VLAN identifiers (0 4093)can be used for tagging purposes.

Max. number of active VLANs

Product Transparent tagging(VPN tagging) mode 1

IEEE 802.1Q / IEEE 802.1adtagging mode

GVRP enabled GVRP disabled

Metropolis® AM /Metropolis® AMS2

64 VLANs per card 247 VLANsper card

1024 VLANsper NE

Metropolis® AMU 64 VLANs per card 247 VLANsper card

1024 VLANsper NE

WaveStar® ADM 16/12 64 VLANs per card 247 VLANsper card

1024 VLANsper NE

Metropolis® ADM(Compact shelf)2

64 VLANs per card 247 VLANsper card

1024 VLANsper NE

Metropolis® ADM(Universal shelf)2

64 VLANs per card 247 VLANsper card

1024 VLANsper NE

LambdaUnite® MSS –3 64 VLANsper card

4093 VLANsper NE

GARP VLAN Registration Protocol (GVRP) Features

....................................................................................................................................................................................................................................

2 - 3 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 185: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Max. number of active VLANs

Product Transparent tagging(VPN tagging) mode 1

IEEE 802.1Q / IEEE 802.1adtagging mode

GVRP enabled GVRP disabled

WaveStar® TDM 10G(STM-64)

– 64 VLANsper card

4093 VLANsper NE

Notes:

1. No distinction is made with respect to the STVRP activation status,because STVRP is enabled per default and cannot be disabled.

2. An alarm (MACcVLANOVFW – Maximum number of VLANinstances exceeded) will be reported when the max. number ofactive VLANs perTransLAN® card is exceeded.

3. TheLambdaUnite® MSS transparent tagging mode rather compares tothe provider bridge tagging mode (see“IEEE 802.1ad VLAN tagging”(2-59)) than to this transparent tagging (VPN tagging) mode.

A maximum number of 1024 active VLANs per network element issupported.

A maximum of 5000 VLAN/port associations is supported pernetwork element, except for theMetropolis® AM/Metropolis® AMS,where the maximum number of VLAN/port associations is 2000. Analarm (MIBcVLANOVFW – Maximum number of VLAN instances

exceeded in MIB) will be reported when the max. number ofVLAN/port associations per network element is exceeded.

GARP VLAN Registration Protocol (GVRP) Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 3 7

Page 186: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ethernet over SDH applications....................................................................................................................................................................................................................................

Purpose This section gives an introduction to the possibleTransLAN® Ethernetover SDH applications.

Types of applications

Layer-2 switching allows different types of applications, including:

• Ethernet point-to-point transport

• Ethernet point-to-point transport in buffered repeater mode

• Ethernet multipoint transport (dedicated bandwidth)

• Ethernet multipoint transport (shared bandwidth)

• Ethernet multiplexing (VLAN trunking)

TransLAN® supports all Ethernet transport solutions. Specific systemconfiguration is required for each network application.

Direct interconnection oftwo LANs - Ethernet

point-to-point transport

The most straight-forward Ethernet application on theTransLAN®

equipment is a leased line type of service with dedicated bandwidth tointerconnect two LAN segments which are at a distance that cannot bebridged by using a simple Ethernet repeater, because the collisiondomain size rules would be violated.

The two interconnected LANs need not be of the same speed; it ispossible to interconnect a 10BASE-T and a 100BASE-T LAN thisway for example.

SDH network

LAN

LAN

Ethernet connection

TransLAN equipment

Features

....................................................................................................................................................................................................................................

2 - 3 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 187: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Mode of operation

Ethernet point-to-point transport can be realized by using any of theTransLAN® operational modes. However, the preferred mode ofoperation for the direct interconnection of two LANs is the repeatermode.

Related information

Please also refer to“Repeater mode” (2-47).

Ethernet multipointtransport with dedicated

bandwidth

The following figure shows a network example of a multipointEthernet over SDH network with dedicated bandwidth:

This multipoint network is dedicated to a single user.

TransLAN equipment

SDH network

LAN(customer A)

Ethernet connection

LAN(customer A)

LAN(customer A)

LAN(customer A)

Ethernet over SDH applications Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 3 9

Page 188: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Mode of operation

Ethernet multi-point transport with dedicated bandwidth can berealized by using any of the followingTransLAN® operational modes:

• LAN-VPN mode

• STP virtual switch mode compliant with IEEE 802.1Q

• STP virtual switch mode compliant with IEEE 802.1ad (providerbridge mode)

Related information

Please also refer to:

• “LAN-VPN (M-LAN) mode” (2-51)

• “IEEE 802.1Q STP virtual switch mode” (2-53)

• “Provider bridge mode” (2-55)

Ethernet over SDH applications Features

....................................................................................................................................................................................................................................

2 - 4 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 189: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ethernet multipointtransport with shared

bandwidth

The following figure shows a network example of a multipointEthernet over SDH network with shared bandwidth:

The SDH capacity is shared among more than one customer in thismultipoint network. This allows customer A to use the complete SDHbandwidth at the moment that customer B is inactive, and vice versa.As Ethernet traffic is inherently bursty, sharing bandwidth canincrease the efficiency of the network usage.

Isolation of the traffic of different end-users can be accomplished byusing transparent tagging or VLAN tagging (see“Tagging modes”(2-57)), depending on the desired mode of operation.

TransLAN equipment

STM-N ring

STM-N ring

Ethernet connection

LAN(customer A)

LAN(customer A)

LAN(customer A)

LAN(customer B)

LAN(customer B)

Ethernet over SDH applications Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 4 1

Page 190: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Mode of operation

Ethernet multi-point transport with shared bandwidth can be realizedby using any of the followingTransLAN® operational modes:

• LAN-VPN mode

• STP virtual switch mode compliant with IEEE 802.1Q

• STP virtual switch mode compliant with IEEE 802.1ad (providerbridge mode)

Related information

Please also refer to:

• “LAN-VPN (M-LAN) mode” (2-51)

• “IEEE 802.1Q STP virtual switch mode” (2-53)

• “Provider bridge mode” (2-55)

VLAN trunking Trunking applications are a special case of Ethernet multipointtransport, either with dedicated or shared bandwidth.

Trunking applications are those applications where traffic of multipleend-users is handed-off via a single physical Ethernet interface to arouter or switch for further processing. This scenario is also called“back-hauling”, since all traffic is transported to a central location,e.g. a point-of-presence (PoP) of a service provider.

Trunking applications can be classified into two topology types:

• Trunking in the hub-node

• Distributed aggregation in the access network

Common to both topology types is that the Ethernet traffic of multipleLANs is aggregated on one or a few well filled Ethernet interfaces,the trunking LAN interface(s). Thus, the Ethernet traffic of multipleend-users can be made available to a service provider at a centrallocation via a limited mumber of physical connections. WithoutVLAN trunking, each end-user would need to be connected to theservice provider equipment via his own Ethernet interface.

Trunking applications include the aggregation of Ethernet traffic of asingle end-user as well as the aggregation of Ethernet traffic ofmultiple different end-users. Isolation of the traffic of differentend-users can be accomplished by using transparent tagging or VLANtagging (see“Tagging modes” (2-57)), depending on the desired modeof operation.

A typical TransLAN® trunking application would be a configurationwhere many E/FE access nodes are combined with a trunking GbEhub node (cf.“Distributed aggregation in the access network” (2-44)).

Ethernet over SDH applications Features

....................................................................................................................................................................................................................................

2 - 4 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 191: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Trunking in the hub node

This figure shows an example of VLAN trunking in the hub node:

Each access node is individually connected to the hub node over asingle SDH connection (or even one SDH connection per LAN port).The trunking LAN interface is a network-role LAN port. The VLANtags in the Ethernet frames are preserved, i.e. made available to theservice provider, and can thus be used for further processing.

A high WAN port density is required in the hub-node.

Averaging of the peak traffic loads of each access node (or LAN port)is not used. Each SDH link bandwidth has to be engineered for thecorresponding amount of peak traffic.

X

SDHnetwork

LAN

LANLAN

LAN

Trunking LAN interface(network-role LAN port)

Hub node

Internet

VLAN, ,17 18 19VLAN

,5 91

VLAN,21 22

VLAN66

VLAN , ,, ,566 91

17 18 1921 22

, ,,

ISP router

Accessnodes

Accessnodes

Ethernet over SDH applications Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 4 3

Page 192: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Distributed aggregation in the access network

This figure shows an example of distributed aggregation in the accessnetwork:

The SDH bandwidth can be shared by many end-users, which allowsto gain from the statistical effects in the traffic offered by eachend-user (“statistical multiplexing”). Thus, the distributed aggregationin the access network configuration is more bandwidth efficient thanthe trunking in the hub node topology.

Another difference is that in the trunking in the hub-node topology,the hub node has to support many WAN ports, which is not the casein the distributed aggregation in the access network configuration.

A certain bandwidth allocation fairness can be guaranteed by applyingingress rate control in the access nodes. Please note that ingress ratecontrol isnot supported on GbETransLAN® cards but only on E/FETransLAN® cards.

X

SDHnetwork

LAN

LANLAN

LAN

Trunking LAN interface(network-role LAN port)

Internet

VLAN, ,17 18 19VLAN

,5 91

VLAN,21 22

VLAN66

VLAN , ,, ,566 91

17 18 1921 22

, ,,

ISP router

Hub node

Accessnodes

Accessnodes

Ethernet over SDH applications Features

....................................................................................................................................................................................................................................

2 - 4 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 193: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Mode of operation

Trunking applications can be realized by using any of the followingTransLAN® operational modes:

• LAN-VPN mode

• STP virtual switch mode compliant with IEEE 802.1Q

• STP virtual switch mode compliant with IEEE 802.1ad (providerbridge mode)

Related information

Please also refer to:

• “LAN-VPN (M-LAN) mode” (2-51)

• “IEEE 802.1Q STP virtual switch mode” (2-53)

• “Provider bridge mode” (2-55)

Ethernet over SDH applications Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 4 5

Page 194: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Operational modes....................................................................................................................................................................................................................................

Overview of operationalmodes

TheseTransLAN® operational modes exist:

• Proprietary VPN modes:

– Multipoint LAN bridging mode (“LAN-VPN mode”,“MLAN mode”)

– Multipoint LAN bridging mode enhanced with IEEE 802.1pQoS functions (“MLAN_QoS mode”)

• Standard compliant IEEE modes:

– STP virtual switch mode compliant with IEEE 802.1Q

– STP virtual switch mode compliant with IEEE 802.1ad(“Provider bridge mode”)

Virtual Switch operationmode

When the transparent tagging mode has been selected on the EthernetInterface extension card (LAN unit) level, a different Virtual Switchoperational mode must be chosen per Virtual Switch. The VirtualSwitch can be configured in the following operation modes:

• Repeater

• LAN-interconnect

• LAN-VPN (MLAN)

When the IEE802.1Q/IEEE 802.1a tagging mode has been selected,the operation mode of the Virtual Switch is always Spanning Tree.

The physical Layer 2 (L2) switch that is present on an Ethernet LANtributary board can be split into several logical or virtual switches. AVirtual Switch is a set of LAN/WAN ports on a Ethernet LANtributary board that are used by different VLAN’s which can share thecommon WAN bandwidth. Each of the virtual switches can operate ina specific Virtual Switch mode depending on the VLAN taggingscheme, and each Virtual Switch mode allows specific LAN-WANport associations as explained in the following paragraphs.

First the VLAN tagging mode has to be specified on LAN unit level,this can be either IEEE 802.1Q/IEEE 802.1aVLAN tagging or VPNtagging. In VPN tagging mode, end-user VLAN tags that optionallymay appear in the end user traffic are ignored in the forwardingprocess. These VLAN tags are carried transparently through the″TransLAN Network″. In VLAN-tagging mode, the VLAN tags arealso carried transparently, but the VLAN ID in the VLAN tags is usedin the forwarding decision. Therefore customers’ VLAN IDs may not

Features

....................................................................................................................................................................................................................................

2 - 4 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 195: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

overlap on a physical Ethernet switch, the VLAN IDs must be uniqueper switch pack. (FEP 1_188_14221)

After having provisioned the tagging mode, per virtual switch adifferent Virtual Switch operational mode may be chosen. TheEthernet LAN tributary board supports either the Repeater mode,LAN-Interconnect, LAN-VPN, and Spanning Tree Protocol VirtualSwitch mode of operation. IEEE 802.1D MAC forwarding andaddress filtering, multi-point bridging and spanning tree protocol(STP) are supported under all modes of operation, except the Repeatermode.

The following table gives an overview of the different modes and alist of the corresponding supported functionality:

VLAN TaggingMode

Virtual Switch Mode Ethertype/TPID Dynamic VLANRegistration Protocol

Spanning TreeImplementation

valid per pack valid perunit

VPN Tagging Repeater N/A N/A No STP

LAN Interconnect(DedicatedBandwidth)

N/A STVRP Multiple STP

LAN-VPN (SharedBandwidth)

N/A

IEEE802.1Q/IEEE802.1ad VLANtagging

Spanning TreeSwitched Network

600 ... FFFF,except for8100

GVRP Single STP

8100

Repeater 600 ... FFFF,except for8100

N/A No STP

Interoperability ofoperational modes

Virtual Switches that are configured in the same operational mode caninterwork. Virtual Switches not configured in the same operationalmode do not interwork in all cases. If a Virtual Switch is configuredin the “Repeater” mode or the “STP Switch” mode, it can onlyinterwork with Virtual Switches that are configured in the same mode.

Interworking between a remote LAN-interconnect virtual switch and aVPN virtual switch is not prohibited, because the LAN-interconnectmode can be seen as a special case of the VPN mode.

Repeater mode A virtual switch in repeater mode consists of exactlyone LAN portandone WAN portin a fix 1:1 relationship. All Ethernet framesentering the virtual switch at a LAN port are transparently forwardedto the corresponding WAN port and transported over the network.None of the standard IEEE Std 802.1D/Q processes (MAC address

Operational modes Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 4 7

Page 196: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

learning, MAC frames forwarding and filtering, VLAN classificationand filtering) applies. Received frames are relayed to the other port ofthe virtual switch, irrespective of their format or contents.

The WAN port that supports the Repeater mode requires theprovisioning of the following parameters:

• WAN port capacity; for the Fast Ethernet card requires manualprovisioning at 2, 4, 6, 8, 10, 50 or 100 Mbit/s and for theGigabit Ethernet card requires manual provisioning at VC-12,VC-4 and VC-3.

• association of the WAN port to a LAN port

• create cross-connections between VC-X and TU-X (where X=12or 3).

The following figure shows the network element configured in theRepeater operation mode.

A virtual switch in repeater mode emulates an Ethernet repeaterexcept that it

• breaks-up the collision domains,

• removes the length limitation of CSMA/CD LANs, and

• also works in full-duplex mode.

Synonyms

The TransLAN® repeater mode of operation is often also referred toas “promiscuous mode” or “buffered repeater mode”.

SDH network

switch cross-connection

LAN ports

WAN ports

Line port

Operational modes Features

....................................................................................................................................................................................................................................

2 - 4 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 197: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Intended use

The repeater mode is only intended to be used in point-to-pointconfigurations to offer a leased-lines type of service. The repeatermode is supported by E/FE as well as GbETransLAN® cards.

Configuration rules and guidelines

Please observe these configuration rules and guidelines:

• The use of the repeater mode is limited to virtual switchesconsisting of exactlyone customer LAN portandone networkWAN port. Only point-to-point connections are supported.

• No customer identifier (CID) can be configured.

• It is not possible to provision QoS functions.

• Flow control can be enabled or disabled per LAN port.

• No WAN port configurations are possible.

• When a virtual switch is switched from any of the otheroperational modes into repeater mode, then all VLAN and QoSconfiguration information will be reset. When the virtual switchis switched back again into the previous mode, then theseconfiguration settings willnot become operational again but mustbe provisioned again.

The Ethernet packets are carried across the SDH network in achannel. When using the Fast Ethernet card, each channel comprisesup to 5 VC12 or up to 2 VC3 concatenated. These VC12s and VC3sbehave in the same way as normal SDH VC12s from an E1 port orSDH VC3s from an E3 port. There is some buffering in the NE, but itis still possible to lose packets because the channel bandwidth can beless than the Ethernet traffic rate. When using the Gigabit Ethernetcard, each channel comprises VC-4 or VC-3.

LAN-interconnect mode The LAN-interconnect mode of operation offers dedicated WANbandwidth to a single end-user. Under the LAN-interconnect mode ofoperation, a Virtual Switch must only contain LAN ports with thesame CID (Customer ID) to ensure the entire WAN port bandwidthallocated for the group is dedicated to a single end-user. Anycombination of LAN- and WAN-ports is allowed, but with a minimumof two ports to be meaningful.

Operational modes Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 4 9

Page 198: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The following figure shows the network element configured in theLAN-interconnect operation mode.

The Ethernet packets are carried across the SDH network in achannel. When using the Fast Ethernet card, each channel comprisesof up to 5 VC12 or of up to 2 VC3 concatenated. These VC12s andVC3s behave in the same way as normal SDH VC12s from an E1

LAN

LAN

LAN

LAN

X

X

virtualswitch

cross-connection

LAN ports

WAN ports

Line port

Operational modes Features

....................................................................................................................................................................................................................................

2 - 5 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 199: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

port respectively normal SDH VC3s from an E3 port. When using theGigabit Ethernet card, each channel comprises of VC-4 or of VC-3.

This operation mode support the following features:

• Learning bridges

• Spanning tree

• Additional SDH bandwidth

• Virtual Switch and

• CID (Customer Identifier).

Special case of the LAN-VPN mode

The LAN interconnect mode of operation is a special case of theLAN-VPN operation. In the LAN interconnect mode a virtual switchmay contain LAN and WAN ports of a single user only.

The TransLAN® cards can support both modes of operationsimultaneously as long as the corresponding virtual switches donotinclude the same WAN ports.

Configuration rules and guidelines

Please observe these configuration rules and guidelines:

• On LAN ports the CID needs to be provisioned manually.The permitted CID value range is [0 4093]. However, note thatonly values out of the value range [1 4093] can be used toidentify a user while the value “0” cannot. The correspondingLAN port is disabled if the CID is set to “0”.

• In the LAN interconnect mode, the virtual switch is dedicated toa single customer. Therefore, all LAN ports of a virtual switchmust have thesamecustomer identifier (CID).

• In the LAN interconnect mode, LAN ports are alwayscustomer-role ports, and WAN ports are always network-roleports (see“Port provisioning” (2-64)).

LAN-VPN (M-LAN) mode Under the LAN-VPN (Virtual Private Network) operation mode, anumber of LAN- and WAN ports are grouped together to form onevirtual switch. The Virtual Switch contains LAN ports of multipleend-users sharing the same WAN port(s) bandwidth. To safeguardeach individual end-user’s data flow and to identify an end-user’sVPN from the shared WAN, the Ethernet Interface card assigns a CIDto each LAN port within a Virtual Switch. The CID of each end-user(or LAN port) must be unique within a shared WAN port to create afully independent VPN. The VPN provisioning on the WAN ports onthe access and intermediate nodes is done automatically by the

Operational modes Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 5 1

Page 200: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

proprietary protocol STVRP (Spanning Tree with VPN RegistrationProtocol) that runs without operator intervention.

The end-users are assigned bandwidth by the operator. It allowsmultiple end-users to share the same SDH WAN bandwidth with eachend-user being allocated a sub-VC-12-Xv (X= 1, 2, 3, 4, 5) orsub-VC-3-Xv (X=1, 2) rate of bandwidth when using the FastEthernet card and sub-VC-4-Xv (X=1, 2,...7) or sub-VC-3-Xv (X=1,2) when using the Gigabit Ethernet card. The combined end-userbandwidth is then mapped to the SDH time-slots and transported inthe SDH network as a single data load. The minimum rate that can beconfigured per end-user at a LAN port is 150 kbit/s. The operator alsospecifies a traffic policy for each end-user.

The LAN-VPN operation mode controls the shared bandwidth bymaking use of the following features:

• Learning bridges

• Spanning tree

• V-LAN (Virtual-LAN)

• CID (Customer Identifier)

• Assigned bandwidth policy (CIR = Committed Information Rateand PIR = Peak Information Rate)

• Additional SDH bandwidth and SDH WAN bandwidth sharing

• Traffic policy (Strict policing/Oversubscription).

The following figure shows the network element configures in theLAN-VPN operation mode

Operational modes Features

....................................................................................................................................................................................................................................

2 - 5 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 201: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

VPN tagging mode VPN tagging is used to identify user frames in the LAN-VPN modeof operation. VPN tagging is often also referred to as “transparenttagging”.

VPN tagging is characterized as follows:

• Selecting the VPN tagging mode implies that the port role of theports is fixed. LAN ports are always customer role ports, andWAN ports are always network role ports (see“Flexible port roleassignment” (2-65)).

• VPN tagging is a double tagging mode. This means that acustomer identifier (CID tag) is inserted into each frame at eachnetwork ingress LAN port. User frames that are already taggedbecome double tagged. The CID tag is removed from the frameat each network egress LAN port.

• Ports forward only those frames that have a CID tag which“belongs” to that port (i.e. which has previously been provisionedon that port).

In the VPN tagging mode, the term “LAN group” is synonymouslyused to the term “virtual switch”.

Configuration rules and guidelines

Please observe these configuration rules and guidelines:

• Be aware that the port role of the LAN and WAN ports is fixed(see above):

– LAN ports are always customer role ports.

– WAN ports are always network role ports.

• On LAN ports the CID needs to be provisionedmanually.

• The CID provisioned on each LAN port must beuniquewithin ashared WAN to create a fully independent VPN.The VPN provisioning on the WAN ports is done automaticallyby means of the proprietary spanning tree with VPN registrationprotocol (STVRP).

IEEE 802.1Q STP virtualswitch mode

The IEE802.1Q/IEEE 802.1a VLAN tagging scheme can be seen asan extension of the LAN-VPN mode, providing more flexibility indefining the VPN’s and in general leading to a more efficient use ofbandwidth. In IEEE 802.1Q VLAN tagging mode, a virtual switch isformed by a combination of LAN- and WAN ports on a physicalswitch that is used by different VLAN’s which can share the commonWAN bandwidth. Each port can be part of only one virtual switch, buta certain port may be associated with more than one VLAN. The portsthat are associated with a certain VLAN ID form the VLAN PortMember Set.

Operational modes Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 5 3

Page 202: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

On ingress, each packet is filtered on its VLAN ID. If the receivingport is a member of the VLAN to which a received MAC frame isclassified, then the frame is forwarded. The user can provisionwhether untagged packets are dropped, or tagged with a PVID (PortVLAN ID), via the acceptable frame type parameter.

Example VLAN trunking

The VLAN trunking example shown in the next figure is one of thepossible applications in this operation mode.

VLAN IDs assigned to LAN Ports should not overlap in case theoperator wants to ensure Layer-2 security between those LAN Ports(in many applications, LAN Ports are likely to be dedicated to onecustomer). It is the responsibility of the operator to defineappropriately non-overlapping VLAN IDs on all the created virtualswitches.

Also the provisioned PVID, with which untagged incoming frames aretagged, should not overlap with any VLAN ID on the virtual switchof which the customers’ port is part (again, this is the responsibility ofthe operator). Manual provisioning of intermediate nodes can becumbersome and difficult. Therefore it is recommended to use theauto-provisioning mode for VLAN ID’s on the intermediate nodes. A

VLANs 1 to 20

Customers Access Site

VLANs 1 to 10VLANs11 to 20

VC-N -Xv

to/fromISP Router

ISP Premises/Site

FE or GbE interface

VLAN 1 to 10 = VLAN List of customer A

LAN

WAN

VLANs 1 to 10VLANs11 to 20

Customers Access Site

VLAN 11 to 20 = VLAN List of customer B

VC-N -Xv

VLAN trunking

Customer A's + customer B's traffic

Net

wo

rkEl

emen

t

Net

wo

rkEl

emen

t

Net

wo

rkEl

emen

t

LAN

WAN

WAN

LAN

Operational modes Features

....................................................................................................................................................................................................................................

2 - 5 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 203: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

protocol named GVRP (GARP VLAN Registration Protocol) providesthis functionality. GVRP is an application of the Generic AttributeRegistration Protocol (GARP) application, which runs on top of theactive spanning tree topology.

IEEE 802.1Q defines two kinds of VLAN registration entries in theBridge Filtering Database: static and dynamic entries. In theTransLAN® implementation, static entries need to be provisioned onaccess node LAN ports only. GVRP will take care of configuringdynamic entries on the WAN ports of intermediate and access nodes.

A spanning tree per virtual switch is implemented. If the user wantsthe traffic to be protected by the spanning tree protocol and uses themanual-provisioning mode, he must make sure that the WAN ports inthe alternative path also will have the corresponding VLAN IDsassigned. E.g. in a ring topology, all NE’s in the ring must beprovisioned with this VLAN ID. In automatic mode, the GVRPprotocol will take care of the dynamic VLAN ID provisioning. Theuser has the possibility to flush dynamic VLAN’s, thus removedynamic VLAN’s that are no longer used.

Only independent VLAN learning is supported. This means, if a givenMAC address is learned in a VLAN, the learned information is usedin forwarding decisions taken for that address only relative to thatVLAN.

For the IEEE 802.1Q VLAN tagging mode, the oversubscription modeis not supported (cf.“Quality of Service (QoS) overview” (2-70)).

Configurable spanning tree parameters

Even though the management system is an SDH network elementmanager, the data networking problems still need to be addressedwhen managing network elements carrying Ethernet traffic. As suchthe following parameters are visible/provisionable per virtual switch.

• bridge address

• bridge priority

• root cost

• root port

• port priority

• bridge priority

Provider bridge mode The provider bridge mode, a double tagging mode with provisionableTPID (“Ethertype”), is - from a functional point of view - comparableto the LAN-VPN with the chief difference that the provider bridgemode is compliant to the IEEE 802.1ad standard while the VPNmodes are Lucent Technologies proprietary modes, and that the

Operational modes Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 5 5

Page 204: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

provider bridge mode supports Quality of Service features while theLAN-VPN does not.

Traffic is forwarded based on the destination MAC address and theouter VLAN tag (S-tag).

As in the IEEE 802.1Q STP virtual switch mode, a virtual switch inthe provider bridge mode is a set of LAN/WAN ports on a physicalswitch that are used by different VLANs which can share the commonWAN bandwidth. VLANs in the same virtual switch are defined bytheir VLAN port member set. An instance of the spanning treeprotocol runs on the WAN ports for each virtual switch.

The LAN ports and WAN ports can be configured to be customer-roleor network-role ports (see“Flexible port role assignment” (2-65)).

In the provider bridge mode, the IEEE 802.1ad VLAN tagging modeis used (see“IEEE 802.1ad VLAN tagging” (2-59)).

Operational modes Features

....................................................................................................................................................................................................................................

2 - 5 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 205: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Tagging modes....................................................................................................................................................................................................................................

Overview Sharing transport channels between multiple users requires theidentification of MAC frames. Tagging is the process of attaching anidentifier, a “tag”, to a MAC frame in order to identify the user towhich the frame pertains.

These tagging modes are supported:

• Transparenttagging (“VPN tagging”)

• IEEE 802.1Q/IEEE 802.1adVLAN tagging

– VLAN tagging compliant with IEEE 802.1Q-1998 (“IEEE802.1Q VLAN tagging”)

– VLAN tagging compliant with IEEE 802.1ad (“IEEE802.1ad VLAN tagging”, “Provider bridge tagging mode”)

The different tagging modes are explained later-on in this section.

Important! Note that it isnot possible to use different taggingmodes at the same time on the sameTransLAN® card.

However, within the transparent tagging mode there can bevirtual switches in the repeater mode, LAN interconnect mode, orLAN-VPN mode (with or without IEEE 802.1p QoS) at the sametime on the same physical switch.

Transparent tagging Transparent tagging (or “VPN tagging”) is a double tagging modeused to identify end-user frames in the LAN-VPN mode of operation.

Selecting the transparent tagging mode implicitely means that the portrole of the ports is fixed. LAN ports are always customer-role ports,and WAN ports are always network-role ports (see“Flexible port roleassignment” (2-65)).

To enable bandwidth sharing, a customer identification (CID) isassociated with every LAN port. This CID is inserted into incomingEthernet frames, in an extra tag. MAC address filtering and learning isdone independently for every CID.

Ethernet frames that are already tagged become double tagged.Already present end-user VLAN tags remain unused in the transparenttagging mode, i.e. every VLAN tag is transmitted transparentlythrough the SDH network.

Outgoing frames are only transmitted on LAN ports which have therespective CID associated. The extra tag is removed before theEthernet frames are forwarded to an external LAN.

Note that in the VPN tagging mode the term “LAN group” issynonymously used to the term “virtual switch”.

Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 5 7

Page 206: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Configuration rules and guidelines

Please observe these configuration rules and guidelines:

• The port role of the LAN and WAN ports is fixed in theoperational modes that make use of the VPN tagging mode (seeabove):

– LAN ports are always customer role ports.

– WAN ports are always network role ports.

• On LAN ports the CID needs to be provisionedmanually.

• The CID provisioned on each LAN port must beuniquewithin ashared WAN to create a fully independent VPN.

The VPN provisioning on the WAN ports is done automatically bymeans of the proprietary spanning tree with VPN registration protocol(STVRP).

Important! Changing the tagging mode from transparent taggingto IEEE 802.1Q/IEEE 802.1ad VLAN tagging or vice versa istraffic affecting! Furthermore, most objects provisioned in onemode will be deleted or reset to default - except the LAN group /virtual switch infrastructure - when switching to the other mode.

IEEE 802.1Q VLAN tagging IEEE 802.1Q VLAN tagging is used to identify end-user frames in theSTP virtual switch mode compliant with IEEE 802.1Q.

These are the IEEE 802.1Q VLAN tagging rules:

• On end-user LAN interfaces:

– At each network ingress port, untagged user frames aretagged with a default identifier, the port VLAN identifier(PVID) which is removed from the frame at the networkegress port.

Tagging modes Features

....................................................................................................................................................................................................................................

2 - 5 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 207: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Already tagged frames are forwarded if their VLANidentifier is in the port’s static or dynamic list of VLANIDs, i.e. if the port belongs to the configured port memberset for that VLAN ID. The static VLAN ID list isconfigurable. The dynamic VLAN ID list is automaticallygenerated by making use of the GARP VLAN RegistrationProtocol (GVRP).

– At each network egress port, the port VLAN identifier(PVID) is removed from previously untagged frames thatwere tagged with the PVID at the ingress port. VLANtagged frames are forwarded if the port belongs to theconfigured port member set for the respective VLAN ID.

• On trunking LAN interfaces,all tagged frames are forwarded inboth directions. Untagged frames are discarded (dropped).

• The end-customer VLAN tag sets have to be disjunct.

IEEE 802.1ad VLANtagging

The IEEE 802.1ad VLAN tagging mode (“provider bridge taggingmode”) is a double tagging mode with provisionable Ethertype(TPID), used to identify end-user frames in the STP virtual switchmode compliant with IEEE 802.1ad (“provider bridge mode”).

At each customer role port, a provider bridge tag carrying a customeridentifier (CID) is inserted into each Ethernet frame in the ingressdirection, and removed from the frame in the reverse direction.Frames that are already tagged become double tagged. The IEEE802.1ad VLAN tagging mechanism is transparent to the end-customer.VPNs on transit nodes (no customer LAN port) are automaticallyinstantiated by means of the standard GVRP protocol which optionallycan be disabled.

The value of the Ethertype (TPID) can be flexibly chosen. However,some values are reserved for specific purposes, for example:

• 0x0800 for IP

• 0x0806 for ARP

• 0x8847 for MPLS

• 0x8100 is not selectable because this is the default value for theSTP virtual switch mode compliant with IEEE 802.1Q.

The recommended value for the Ethertype in the provider bridgetagging mode is 0x9100.

Tagging modes Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 5 9

Page 208: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Configuration rules and guidelines

Please observe these configuration rules and guidelines:

• The provider bridge mode can be configured by selecting theIEEE 802.1Q / IEEE 802.1ad tagging mode in combination withprovisioning an Ethertypein the range 0x0601 0xFFFF, butunequal to 0x8100. Provisioning the value 0x8100 for theEthertype results in the selection of the STP virtual switch modecompliant with IEEE 802.1Q.The recommended value for the Ethertype in the provider bridgetagging mode is 0x9100. Please also observe the reserved valuesas given above.

• The customer identification (CID) can be configured in the range[0 4093].

Important! Changing the tagging mode is traffic affecting!

Furthermore, most objects provisioned in one mode will bedeleted or reset to default - except the LAN group / virtualswitch infrastructure - when switching to a different mode.

Tagging modes Features

....................................................................................................................................................................................................................................

2 - 6 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 209: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Tagged MAC frame The following figure illustrates the structure of the MAC frame indifferent tagging modes as well as the structure of the respective tags.

Legend:

TPID Tag protocol identifier (“Ethertype”) - indicatesthe presence of a VLAN tag (or CID tag,respectively). Furthermore, it indicates that thelenght/type field can be found at a differentposition in the frame (moved by 4 bytes).

Destination address

IEEE 802.1Q VLAN tagging modeVPN tagging mode /

IEEE 802.1ad VLAN tagging mode

Destination address

VLAN tag (C-tag) CID-tag (S-tag)

VLAN tag (C-tag)

TPID

UP CFI VID (V ... V )8 11

Length/Type

Length/Type

Source address Source address

Payload Payload

6 6

6 6

4 4

4

4

4

2

2

46 - 1500

46 - 1500MA

C fr

ame

(64

- 15

22 b

ytes

)

MA

Cfr

ame

(68

-15

26by

tes)

FCS

FCS

2

2VID (V ... V )1 7

TP

ID(e

.g.0

x91

00

)

S-tag

S-V

ID(c

on

t.)

S-V

IDS

-UP

S-CFI

v 11,

v 10,

v 9,

v 8

v 7,

v 6,v

5,v 4

,v3,

v 2,v

1,v 0

p 2,

p 1,

p0

TP

ID

C-tag

(co

nt.

)

C-CFI

v 11,

v 10,

v 9,

v 8

v 7,

v 6,v

5,v 4

,v3,

v 2,v

1,v 0

p 2,

p 1,

p0

C-U

PC

-VID

(0x8

100)

C-V

ID

Tagging modes Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 6 1

Page 210: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

UP (3 bits) User priority - “0” (low priority) “7” (highpriority).

CFI (1 bit) Canonical Format Identifier - indicates thepresence or absence of routing information.

ID (12 bits) Identification - customer identification which canbe configured in the range [0 4093].

Concerning their structure there is no difference between a VLAN tag(C-tag) and a CID tag (S-tag). A distinction between both types oftags can be made by means of the value in the TPID field, the“Ethertype”. In the IEEE 802.1ad VLAN tagging mode (providerbridge tagging mode), the Ethertype can be provisioned per virtualswitch.

The value of the Ethertype depends on the mode of operation:

• In the transparent tagging modes (VPN tagging modes), the valueof the Ethertype is 0xFFFF, and cannot be changed.

• In the IEEE 802.1Q VLAN tagging mode, the value of theEthertype is 0x8100, and cannot be changed.

• In the IEEE 802.1ad VLAN tagging mode (provider bridgetagging mode), the value of the Ethertype can be flexibly chosenin the range 0x0601 0xFFFF, but unequal to 0x8100. Therecommended value for the Ethertype in the provider bridgetagging mode is 0x9100.

Tagging modes Features

....................................................................................................................................................................................................................................

2 - 6 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 211: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Comparison of differenttagging schemes

The next figure summarizes the possible tagging schemes:

• No tagging

• Single tagging (IEEE 802.1Q VLAN tagging)

• Double tagging (VPN tagging, IEEE 802.1ad VLAN tagging)

IPG

Bytes: 12 (min.) 7 1 6 6 2 46 - 1500 4

Preamble SFD DA SA L / T Data FCS

IPG

Bytes: 12 (min.) 7 1 6 6 46 - 15004

Preamble SFD DA SA Data FCS

2

L / TVLAN

4

46 - 15004

Data FCS

2

L / TVLAN

44

CID

6 6

DA SA

No tagging

Single tagging

Double tagging

Tagging modes Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 6 3

Page 212: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Port provisioning....................................................................................................................................................................................................................................

Customer-role andnetwork-role ports

The user can assign a so-called “port role” to WAN ports as well as toLAN ports. In this way it is possible to forward VLAN tags ,especially in double-tagging mode, also via LAN ports. Additionally itis possible to run the STP and GVRP protocols on physical LANports, too.

Each LAN port or WAN port can have one of the following portroles:

Customer role Customer-role ports are usually located at the edge of the switchedTransLAN®

network boundary, providing the Ethernet interface to the end-customer.Ethernet frames may be but need not necessarily to be tagged.

In the majority of cases, LAN ports are customer-role ports. However, two LANports connected via an Ethernet LAN link would be an example of network-roleLAN ports. Another example would be a trunking LAN port connected via anEthernet LAN link to an ISP router (where VLAN tags are needed for furtherprocessing).

Network role Network-role ports usually interconnect the nodes that make up theTransLAN®

network. Ethernet frames need to be tagged.

In the majority of cases, WAN ports are network-role ports. However, a WANport which is connected to an Ethernet private line unit (EPL unit), thusextending the switchedTransLAN® network boundary, would be an example ofa customer-role WAN port.

Features

....................................................................................................................................................................................................................................

2 - 6 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 213: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The following figure serves to visualize the concept of customer-roleand network-role ports.

Flexible port roleassignment

In most cases physical LAN ports have the customer role and physicalWAN ports have the network role, but there may be exceptions insome applications. In the following figure the WAN port connects anEPL link and is therefore at the edge of theTransLAN® network.Thus it has the customer role in this case.

In the example in the figure below the VLAN tags have to beforwarded to a router. The router uses the tagging information for itsswitch decisions. Additionally the LAN port must fulfil a networkrole. In this case it behaves like a node of theTransLAN® network. Itcould also participate in the STP in order to avoid loops, if there was

EPL unit

Customer LAN port

Network LAN port

Customer WAN port

Network WAN port

“neutral” LAN port

“neutral” WAN port

Ethernet LAN link

SDH link (virtually concatenated VCs)

Switched TransLANnetwork boundary

LAN unit “Ethernet over SDH”

EPL link

LAN

WAN port (“customer role”)

TransLANTM networkLAN unit

Port provisioning Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 6 5

Page 214: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

another link from a Router LAN interface to a second node within theTransLAN® network.

A LAN port which operates in the “network role” behaves like aWAN port in terms of VLAN tagging, STP and GVRP.

The default settings are shown in the following table

Physical ports

Port role LAN port WAN port

Customer role default

Network role default

In the IEEE 802.1Q STP virtual switch mode and in the providerbridge mode, the port role of each LAN and WAN port can beflexibly assigned. Each LAN or WAN port can be configured to beeither a customer-role or network-role port.

LAN unitLAN unit “Ethernet over SDH”

LAN TransLANTM network

LAN port (“network role”)

Router

LAN unitLAN unit

Forbidden acc. to STP

Port provisioning Features

....................................................................................................................................................................................................................................

2 - 6 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 215: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

These are the characteristics of customer-role and network-role ports:

Customer-role port Network-role port

In the IEEE 802.1Q STP virtualswitch mode:

In the ingress direction, untaggedEthernet frames are tagged witha default identifier, the portVLAN identifier (PVID). ThePVID is removed from eachframe at each network egressport. See also:“IEEE 802.1QVLAN tagging” (2-58)

In the provider bridge mode:

A provider bridge tag carrying acustomer identifier (CID) isinserted into each Ethernet framein the ingress direction, andremoved from the frame in thereverse direction. Frames that arealready tagged become doubletagged. See also:“IEEE 802.1adVLAN tagging” (2-59)

No tagging or untaggingoperations are performed.

The spanning tree protocol (STP)is not supported.

The spanning tree protocol (STP)can be enabled (default setting)or disabled.

GVRP is not supported.

VLAN IDs or CIDs need to beconfigured manually.

GVRP can be enabled (defaultsetting) or disabled.

Dynamic VLAN IDs or CIDs ofintermediate and access nodesare automatically configured ifGVRP is enabled.

Ingress rate control exists atcustomer-role ports only (see“Quality of Service (QoS)overview” (2-70)).

There is no rate control onnetwork-role ports.

The traffic class encoded in thep1 and p2 bits of the incomingframes is evaluated andtransparently passed through.

Fix port-role assignment inthe VPN tagging modes

In all the operational modes relying on the VPN tagging mode (see“Transparent tagging” (2-57)) the port role is fixed:

• LAN ports arealwayscustomer role ports.

• WAN ports arealwaysnetwork role ports.

Port provisioning Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 6 7

Page 216: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

This port-role assignment in the VPN tagging modes cannot bechanged.Corresponding provisioning options that might be availableon the graphical user interfaces of the management systems do notapply to the VPN tagging modes and are blocked.

Repeater mode In the repeater mode, there is no necessity to distinguish betweencustomer-role and network-role ports, because the repeater mode canonly be used in point-to-point configurations, and there is:

• no tagging mechanism,

• no spanning tree, and

• no GVRP or STVRP.

In the repeater mode, there is simply a LAN port and a WAN port.The LAN port provides the connection to the end-customer LAN, andthe WAN port provides the connection to the SDH transport network(see“Repeater mode” (2-47)).

Example As an example, the following figure shows a possible networkapplication:

Legend:

UNI port User-Network-Interface (always a customer-role port)

TransLAN

EPL

Trunk routerTrunk router

Tagging Area

Protocol Area

DiffServ Area

UNI

UNI

UNI

E-NNII-NNI I-NNI

I-NNI I-NNI

I-NNI

Customer-role port

Network-role port

Port provisioning Features

....................................................................................................................................................................................................................................

2 - 6 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 217: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

I-NNI port Internal Network-Network Interface (always anetwork-role port)

E-NNI port External Network-Network Interface (here a trunkingnetwork-role port)

Port provisioning Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 6 9

Page 218: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Quality of Service (QoS) overview....................................................................................................................................................................................................................................

Introduction Quality of service (QoS) control allows to differentiate betweenEthernet frames with different priorities. If traffic with a high priorityand traffic with a low priority compete for SDH capacity, the trafficwith the high priority should be served first. This can be realizedthrough quality of service control.

QoS control is supported on the E/FE and Gigabit Ethernet cards, inthe IEEE 802.1Q VLAN tagging mode and the IEEE 802.1ad VLANtagging mode (provider bridge mode). QoS control is implemented asa DiffServ architecture applied to layer 2 (in accordance with IETFrecommendations on Differentiated Services, cf.www.ietf.org).

Features

....................................................................................................................................................................................................................................

2 - 7 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 219: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Flow classification,queueing and scheduling

The following figure provides an overview of the QoS control:

Quality of Serviceconfiguration options

The following table gives on overview of the QoS provisioningoptions depending on the configured mode of operation.

Mode of operation Ethertype(hex. value)

QoS CQS QoS_osub Ingress rate control HoL blockingprevention

Repeater mode – [disabled] [disabled] [none] [disabled]

VPNmode

LANinterconnect

[0xFFFF] [disabled] [disabled] [none] [disabled]

LAN-VPN [0xFFFF] [disabled] [enabled] strict policing [enabled]

oversubscription

Ingress

Flowclassifier

Flowclassifier

Ratecontroller

Dropper/Marker

Flowclassifier

Network-role ports:

Customer-role ports:

Dropper Queue

Dropper Queue

Dropper Queue

Dropper Queue

SchedulerPrioritymapping

Dropper Queue

Dropper Queue

Dropper Queue

Dropper Queue

SchedulerPrioritymapping

Switch

Egress

Traffic of one flow

Traffic of one traffic class

Traffic at a port

Ratecontroller

Dropper/Marker

Ratecontroller

Dropper/Marker

Ratecontroller

Dropper/Marker

Flowclassifier

Ratecontroller

Dropper/Marker

Ratecontroller

Dropper/Marker

Ratecontroller

Dropper/Marker

Ratecontroller

Dropper/Marker

Quality of Service (QoS) overview Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 7 1

Page 220: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Mode of operation Ethertype(hex. value)

QoS CQS QoS_osub Ingress rate control HoL blockingprevention

IEEEmode

STP virtualswitch modecompliant withIEEE 802.1Q

0x8100 [enabled] disabled strict policing [enabled]

enabled strict policing,oversubscription

STP virtualswitch modecompliant withIEEE 802.1ad(Provider bridgemode)

0x0600 0xFFFF(≠ 0x8100)

[enabled] enabled strict policing,oversubscription

[enabled]

Notes:

1. QoS CQS: Quality of Service - Classification, Queueing and Scheduling

2. “QoS_osub” represents a configuration parameter which determines if the encoding and evaluation of thedropping precedence is supported (supported if QoS_osub is enabled).

3. Entries in square brackets indicate an implicite selection. If in the “QoS CQS” column for example theentry is “[disabled]”, then the preceding selection of tagging and operation mode implies that Quality ofService - Classification, Queueing and Scheduling (QoS CQS) is not available. It is implicitly disabled, andcannot be enabled.

4. The Ethertype can be set per virtual switch. However, as all virtual switches of aTransLAN® card areswitched in common, it is effectively set perTransLAN® card.

5. The distinction between the STP virtual switch mode compliant with IEEE 802.1Q and the STP virtualswitch mode compliant with IEEE 802.1ad (provider bridge mode) can be realized by provisioning theEthertype. In the STP virtual switch mode compliant with IEEE 802.1Q, the Ethertype is fix preset to0x8100. In the provider bridge mode, the Ethertype can be provisioned in the range 0x0600 0xFFFF, butunequal to 0x8100.

6. If “HoL blocking prevention” is enabled then frames that are destined for an uncongested port will not bediscarded as a result of head-of-line blocking.

Ingress rate control provisioning method

If Quality of Service - Classification, Queueing and Scheduling (QoSCQS) is enabled, then ingress rate control can be provisioned per flowby using QoS profiles (see“Quality of Service provisioning” (2-84)).Otherwise, ingress rate control can only be provisioned per port.

Service level agreements On theWaveStar® ADM 16/1 the responsibility for admission controlis left to the operator. This means there is no check that the ServiceLevel Agreements on already existing connections can be fulfilled,when a new user starts sending data from node A to B.

In this respect the notion of over-subscription factor is important. Thisis the factor by which the calculated bandwidth, based on e.g. thetraffic matrices of the operators sharing a link, exceeds the physicallyavailable bandwidth. Although theoretically the bandwidth can only beguaranteed for an over-subscription factor≤ 1, in practice an

Quality of Service (QoS) overview Features

....................................................................................................................................................................................................................................

2 - 7 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 221: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

over-subscription factor of 5-10 can be used without giving problems.Due to the effects of statistical multiplexing it is safe to “sell thebandwidth more than once”. The burstiness of the traffic fromindividual customers that share a common link makes this possible.The Service Level Agreements give a quantification for the “statistics”of the multiplexing.

Provisioning LAN andWAN ports details

The provisioning of the classifier and rate controller per flow is doneonly on the ingress customer-role port (LAN port). On the networkports (WAN port), only the scheduler for the egress queues isprovisionable.

It is important that some of the QoS settings are provisionedconsistently on all ports throughout the whole customer’s VPNdomain. In the LAN-VPN (M-LAN) operation mode, the ratecontroller mode (none, strict policing, oversubscription) must beprovisioned consistently (per virtual switch). The latter applies to theonly. For the scheduler, for each egress queue the mode =strict_priority/weighted_bandwidth and corresponding weights (pervirtual switch) must be provisioned consistently. This is ensured by abackground aging function of the system. The parameter will beenforced to be set equally.

Quality of Service (QoS) overview Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 7 3

Page 222: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Classification, queueing and scheduling....................................................................................................................................................................................................................................

Flow classification The flow classifier determines into which flow each incoming packetis mapped. On customer-role ingress ports, a number of flows can bedefined, based on port, user priority, and optionally VLAN ID.However, the mapping towards the egress queue is fixed and based onthe user priority only. For each flow a rate controller can be specified(CIR/PIR value).

Apart from these flows based on input criteria, a default flow isdefined for packets that do not fulfil any of the specified criteria forthe flows, e.g. untagged packets that have no user priority field. Thus,untagged traffic is classified per port. All traffic on a certain port istreated equally and attached a configurable default port user priorityvalue to map the traffic on the appropriate queues.

A default user priority can be specified on port level to be added toeach packet in the default flow (see“Default user priority” (2-78)).Furthermore, the rate controller behaviour for the default flow can bespecified. The same fixed mapping table from user priority to trafficclass to egress queue is applied to packets in the default flow as topackets in the specified flows.

Provided that Quality of Service - Classification, Queueing andScheduling (QoS CQS, cf.“Quality of Service configuration options”(2-71)) is enabled, each flow can be assigned a traffic class by usingQoS profiles (see“Quality of Service provisioning” (2-84)).

Each traffic class is associated with a certain egress queue (see“Traffic class to queue assignment” (2-80)).

Ingress direction for network-role ports

For network-role ports, two cases need to be differentiated:

• On I-NNI ports, explicit provisioning of the flow identification(flow configuration) is not provisionable. I-NNI ports alwayshave the default QoS profile assigned. On an I-NNI port, theonly purpose of the flow classifier is to evaluate the traffic class.The traffic class determines the egress queue.

• E-NNI trunk portsmay be split in so-called virtual ports whichcan be provisioned by means of virtual port descriptors (VPDs).Explicit provisioning of the flow identification (flowconfiguration) enables the DiffServEdge function for this fractionof the network-role port. Ingress rate control of these virtualports is the same as for customer-role ports.

Features

....................................................................................................................................................................................................................................

2 - 7 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 223: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ingress rate control Ingress rate control is a means to limit the users access to thenetwork, in case the available bandwidth is too small to handle alloffered ingress packets.

A rate controller has two parameters, a provisionable committedinformation rate (CIR, see below), and a committed burst size (CBS).The committed burst size is the committed information rate multipliedby 0.11 seconds.(CBS = 0.11 seconds × CIR).

Rate control is supported for every ingress flow on everycustomer-role port. There is one rate controller per flow. A “colorunaware one-rate two-color marker” is supported, which can be seenas a degenerate case of the two-rate three-color marker. “Colorunaware” means that the rate controller ignores and overwrites anydropping precedence given by an upstream network element(network-role ports with DiffServEdge function (E-NNI) only).

The rate controller is accurate within 5% of the rates specified for theCIR and PIR. The rate metering comprises the whole Ethernet MACframe. Products may deviate from this and count only the IP packagesize. The rate controller measurement accuracy is optimized for longframe traffic. Shorter frames are underestimated. Thus, it isrecommended to dimension the transporting network to have always aheadroom of at least 10% bandwidth compared to the committedinformation rate (CIR) provisioned.

A two-rate three-color marker is defined by three colors, specifyingthe dropping precedence, and two rates as delimiter between thecolors. The marker will mark each packet with a certain color,depending on the rate of arriving packets, and the amount of credits inthe token bucket. The size of the token bucket will determine howlong and far a data burst may be surpassed before the packets aremarked with a higher dropping precedence.

The three colors indicate:

• Green:Low dropping precedence.

• Yellow: Higher dropping precedence.

• Red:The packet will be dropped.

The two rates mean:

Committed Information Rate(CIR)

The committed information rate is the delimiter between green andyellow packets.

If the information rate is less than the committed information rate, allframes will be admitted to the egress queues. These frames will bemarked “green”, and have a low probability to be dropped at theegress queues.

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 7 5

Page 224: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Peak Information Rate (PIR) The peak information rate is the delimiter between yellow and redpackets.

If the information rate is greater than the committed information rate(CIR), but less than the peak information rate (PIR), the frames willbe admitted to the egress queues. They will be marked “yellow” andhave a high probability to be dropped (“high dropping precedence”).

If the information rate is greater than the PIR, the frames will bemarked “red” and dropped immediately.

For the LAN-VPN (M-LAN) operation mode the relationship betweenCIR and PIR is determined by the rate control mode.

For the IEEE 802.1Q STP virtual switch mode and the providerbridge mode the relationship is as specified in the assigned QoSprofile. Note that on the LKA4 unit, any PIR is interpreted as infinite(if not: CIR=0, or CIR=PIR).

Important! Provisioning of rate controllers does not apply tonetwork-role ports (see“Quality of Service (QoS) overview”(2-70)).

In general, the behavior of the rate controller is characterized asfollows:

• All packets below CIR are marked green.

• All packets above CIR are marked yellow.

• All packets above PIR are marked red and dropped.

In case oversubscription support is disabled (QoS_osub = disabled),then the provisioning of the PIR is ignored and system-internally thevalue of the CIR is taken instead. This leads to a strict policing of allflows entering at a customer-role port of this VS.

Rate control modes The rate controller can operate in two different modes:

1. Strict policing mode (CIR = PIR)

The strict policing mode allows each user to subscribe to a minimumcommitted SDH WAN bandwidth, or CIR (committed informationrate). This mode will guarantee the bandwidth up to CIR but will dropany additional incoming frames at the ingress LAN port that wouldexceed the CIR.

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

2 - 7 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 225: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

All packets below CIR are marked green; all packets above PIR (=CIR) are marked red and dropped.

2. Oversubscription mode (CIR < PIR)

The oversubscription mode allows users to burst their data flow to amaximum available WAN bandwidth at a given instance. When PIR isset equal to the maximum of the physical network port bandwidth,then a user is allowed to send more data than the specified CIR. Theadditional data flow above CIR has a higher dropping probability.

The following two cases can be differentiated in oversubscriptionmode.

Provisioning the ratecontrol mode

The desired rate control mode can be chosen by enabling/disablingoversubscription support (QoS_osub = enabled/disabled), and bysetting the CIR and PIR values. CIR and PIR values can be set bymeans of QoS profiles (see“Quality of Service provisioning” (2-84)).

The setting of the QoS_osub configuration parameter in combinationwith the relationship between CIR and PIR determines which ratecontrol mode becomes effective. If, for example, oversubscriptionsupport is enabled, and the relationship between CIR and PIR isCIR = PIR ≤ MAX, then the rate controller is operated in strictpolicing mode.

Informationrate

0 kbit/s CIR=PIRgreen red

CIR = PIR MAX<

Informationrate

0 kbit/s CIRgreen yellow

0 < CIR < PIR = MAX

Informationrate

0 kbit/s PIRgreen yellow

0 = CIR < PIR < MAX

(CIR)

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 7 7

Page 226: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Important!

1. Which of the rate control modes can actually be configureddepends on the mode of operation (see“Quality of Serviceconfiguration options” (2-71)).

2. As a general rule it is recommended to use theoversubscription mode for TCP/IP applications, especially incase of meshed or ring network topologies where multipleend-users share the available bandwidth.

Dropper / Marker Based on the indication of the rate controller, and the rate controlmode for the flow, the dropper/marker will do the following:

No rate control Oversubscriptionmode

Strict policingmode

Incoming rate <CIR

mark “green” mark “green” mark “green”

Incoming rate >CIR

mark “green” mark “yellow” drop

In the dropper function a decision is made whether to drop or forwarda packet. On aTransLAN® card a deterministic dropping from tailwhen the queue is full is implemented. Packets that are marked redare always dropped. If WAN Ethernet link congestion occurs, framesare dropped. Yellow packets are always dropped before any of thegreen packets are dropped. This is the only dependency on queueoccupation and packet color that is currently present in the dropperfunction. No provisioning is needed.

Default user priority A default user priority can be configured for each customer-role port.Possible values are 0 (lowest priority) 7 (highest priority) in stepsof 1. The default setting is 0.

Provisioning of the default user priority doesnot apply tonetwork-role ports.

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

2 - 7 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 227: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The default user priority is treated differently depending on thetaggging mode:

• LAN-VPN (M-LAN) modeIncoming frames without a user priority encoding (untaggedframes) are treated as if they had the default user priority.

• IEEE 802.1Q VLAN tagging mode and provider bridge modeIncoming frames without a user priority encoding (untaggedframes) get a default user priority assigned. This C-UP may befurtheron equal to a user priority given by one of the provisionedflow descriptors. The subsequent traffic class assignment for thisflow, however, will overwrite this C-UP bits again.

Traffic classes At each ingress port, the traffic class (TC) for each frame isdetermined. At customer-role ports, this is done via the flowidentification and the related provisioned traffic class. At network-roleports, the traffic class is directly derived from the p-bits of theoutermost VLAN tag.

Depending on the operation mode, these traffic classes exist:

Provider bridge modeand IEEE 802.1Q VLANtagging modewithencoding of thedropping precedence

The traffic class is encoded in the userpriority bits using p2 and p1. Thus, 4traffic classes are defined: 0, 1, 2, 3.

IEEE 802.1Q VLANtagging modewithoutencoding of thedropping precedence

The traffic class is encoded in the userpriority bits using p2, p1, and p0. Thus, 8traffic classes are defined: 0, 0-, 1, 1-, 2,2-, 3, 3-. The “n” traffic classes differfrom the “n-” traffic classes in the valueof the p0 bit.

Notes:

1. The support of dropping precedence encoding and evaluation can beenabled or disabled per virtual switch by means of the QoS_osubconfiguration parameter (QoS_osub = enabled/disabled). All virtualswitches belonging to the sameTransLAN® network must beprovisioned equally for their TPID and this QoS_osub configurationparameter.

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 7 9

Page 228: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

These tables show the traffic class encoding in the user priority bits:

For the IEEE 802.1Q VLAN tagging mode with oversubscriptionsupport (QoS_osub = enabled) it is recommended not to use the n-classes, otherwise all frames will always be marked yellow (i.e. theywill have a higher dropping precedence; p0 = 0). In the providerbridge mode, any assignment of an n- class will be recognized as therelated n class (tolerant system behavior for inconsistent provisioning).

Traffic class to queueassignment

The assignment of the traffic classes to the egress queues is asfollows:

Transparenttagging

IEEE 802.1Q VLAN tagging and IEEE802.1ad VLAN tagging (provider bridgemode)

Trafficclass

Queue Traffic class Queue

Internal use 4 Internal use 4

2 3 3 (and 3 -) 3

1 2 2 (and 2-) 2

0 1 1 (and 1-) and 0 (and0-)

1

Traffic class p2 p1

0

1

2

3

1

0

0

0

01

1 1

Traffic class p2 p1

0

1

2

3

1

0

0

0

01

1 1

p0

1

0

0

1

0-

1-

2-

3-

1

0

0

0

01

1 1

1

0

0

1

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

2 - 8 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 229: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Notes:

1. “Internal use” means that the queue is used for network managementtraffic (spanning tree BPDU’s or GVRP PDU’s, for example).

Queueing The egress treatment is the same for customer-role and network-roleports.

Every port has four associated egress queues. The queues 1 and 2 areto be used for delay-insensitive traffic (for instance file transfer); thequeue 3 is to be used for delay-sensitive traffic (for instance voice orvideo), the internal queue 4 is only for BPDU and GRVP PDU.

Please refer to“Traffic class to queue assignment” (2-80)for theassignment of the traffic classes to the egress queues.

Repeater mode

In the repeater mode, there is no queueing process as described above.All frames go through the same queue.

Scheduler The preceding functional blocks assure that all packets are mappedinto one of the egress queues, and that no further packets need to bedropped.

The scheduler determines the order, in which packets from the fourqueues are forwarded. The scheduler on each of the four queues canbe in one of two operational modes, strict priority or weightedbandwidth. Any combination of queues in either of the two modes isallowed. When exactly one queue is in weighted bandwidth mode, itis interpreted as a strict priority queue with the lowest priority.

Provided that Quality of Service - Classification, Queueing andScheduling (QoS CQS, cf.“Quality of Service configuration options”(2-71)) is enabled, the queue scheduling method can be configured asfollows:

Queue scheduling method

Strict priority The packets in strict priority queues are forwarded strictly according to the queueranking. The queue with the highest ranking will be served first. A queue with acertain ranking will only be served when the queues with a higher ranking areempty.

The strict priority queues are always served before the weighted bandwidthqueues.

Weightedbandwidth

The weights of the weighted bandwidth queues will be summed up; each queuegets a portion relative to its weight divided by this summed weight, the so-callednormalized weight. The packets in the weighted bandwidth queues are handled ina Round-Robin order according to their normalized weight.

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 8 1

Page 230: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Each of the two modes has his well-known advantages anddrawbacks. Strict priority queues will always be served beforeweighted bandwidth queues. So with strict priority, starvation of thelower priority queues cannot be excluded. Starvation should beavoided by assuring that upstream policing is configured such that thequeue is only allowed to occupy some fraction of the output link’scapacity. This can be done by setting the strict policing rate controlmode for the flows that map into this queue, and specifying anappropriate value for the CIR. The strict priority scheme can be usedfor low-latency traffic such as Voice over IP and protocol data such asspanning tree BPDU’s or GVRP PDU’s.

Weighted bandwidth queues are useful to assign a guaranteedbandwidth to each of the queues. The bandwidth can of course onlybe guaranteed if concurrent strict priority queues are appropriatelyrate-limited.

Usually the queue with the lowest number also has the lowest rankingorder, but the ranking order of the strict priority queues can beredefined.

Important! It is recommendednot to change the mode andranking of the queue which is used by protocol packets likespanning tree BPDU’s and GVRP PDU’s (queue 3 or queue 4,respectively; cf.“Traffic class to queue assignment” (2-80)).

Weight

A weight can be assigned to each port’s egress queue in order todefine the ranking of the queue.

The weight of a strict priority queue has a significance compared tothe weight of other strict priority queues only.

The weight of a weighted bandwidth queue has a significancecompared to the weight of other weighted bandwidth queues only.

The weights of the weighted bandwidth queues are normalized to100%, whereas the normalized weights of the strict priority queuesindicate just ordering.

Example

The following table shows an example of a scheduler table:

Queue Queue scheduling method Weight Normalized weight

1 Weighted bandwidth 5 50%

2 Strict priority 9 1

3 Weighted bandwidth 5 50%

4 Strict priority 15 2

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

2 - 8 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 231: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The strict priority queues are served before the weighted bandwidthqueues. The strict priority queue with the highest weight is servedfirst, queue 4 in this example.

In this example, after serving the strict priority queues 4 and 2, theremaining bandwidth is evenly divided over queues 1 and 3.

Depending on the mode of operation, queue 3 or queue 4 is used fornetwork management traffic, for instance for the spanning treeprotocol (see“Traffic class to queue assignment” (2-80)). Hinderingthis traffic can influence Ethernet network stability.

Default settings

These are the default settings of the queue scheduling method andweight:

Queue Queue scheduling method Weight

1 Strict priority 1

2 Strict priority 2

3 Strict priority 3

4 Strict priority 4

Classification, queueing and scheduling Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 8 3

Page 232: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Quality of Service provisioning....................................................................................................................................................................................................................................

QoS provisioning concept A 3-stage provisioning concept is used for QoS provisioning. Thisconcept can easily be adapted to different provisioning needs indifferent network applications.

port port

12345

130

LJB459LJB459......LJB459

LJB460B

PROFILE 1

CIR PIR TC .... .... .... ....4500

PROFILE 2

CIR PIR TC .... .... .... ....4inf1

PROFILE 250

CIR PIR TC .... .... .... ....0503

1:n*)

type

TC = Traffic Class

P# = ID of assigned QoS profile

ID

67

9 .....

.....

VIDs

Ctag(10-100 ; 0-7)IPTOSctagged(...)

Ctag(4093; allUPs)

flow #

12345

16

P#

1565444

51

OTHERS

port 70

......

PROFILE 51

CIR PIR TC .... .... .... ....4 4 T

m:255

5 profiles are reserved forfixed default profiles

22 Ctag(MASKxx.xx ; 0)

8

max

.16

LJB460B70

LJB460B10

LJB460B8

PROFILE 91

CIR PIR TC .... .... .... ....4 4 C

flow#

12345

....

P#

1135122

51

port 7

DA(00000........00xxxx)IPTOSnoCtag(101110)IPTOSnoCtag(100xxx)IPTOSnoCtag(01xxxx)IPTOSnoCtag(001xxx)

OTHERS

*) 4 of the physical ports per unit(2 at LJB459) may - if they run in NR -split up into virtual ports.The ’virtual port descriptor ’ definescriterias based on the S-VID.

virtual port descriptor

Virtual Port =

S-tag(10-15; allS-UPs) ORS-tag(110-115; allS-UPs) ORS-tag(4093; allS-UPs) ]

physical port # AND [

Ctag(12,22 ; 0)Ctag(12,22 ; 1)Ctag(12,22 ; 2,3)Ctag(12,22 ; 4-7)Ctag(allCVIDs ; 4-7)

flow#

12345

8

P#

1135222

51

OTHERS

port 1

QoS profilesFlow Identification TablesPort type selection (of a unit) max. 255 per NE

max. 600 per NE

Features

....................................................................................................................................................................................................................................

2 - 8 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 233: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The basic QoS provisioning concept consists of the following stages:

1. For eachport one or more customized flow identification tables(FIT) can be assigned.An FIT can be assigned either to an entire physical port, or to afraction of a physical port, i.e. to a so-called “virtual port”. OnlyE-NNI trunk ports can be split into virtual ports each having anFIT assigned. A virtual port can be defined by means of a virtualport descriptor (VPD).In case more than one FIT is assigned, each FIT is related tousually one virtual port. Each FIT may also be related to severalvirtual ports, provided they are identified by the same virtual portdescriptor (VPD).

2. Theflow identification tablescontain the identification criteriasfor the flows (for example the values of the C-VID and/orC-UP). Furthermore, the flow identification tables contain areference identifying the assigned QoS profile.Up to 600 flow identification tables are supported per networkelement.

3. TheQoS profilescontain the provisioning parameters (CIR, PIR,traffic class).

Using this method of QoS provisioning via QoS profiles can beenabled or disabled on a per-NE basis.

On a per-port basis you can decide to only use default QoS profiles,or to define your own QoS profiles in order to accomplish flowconfiguration.

Provisioning defaults The parameter settings in the default QoS profiles for customer-roleand network-role ports are:

Port role CIR PIR TC

Customer-role

MAX MAX 0

Network-role MAX MAX T

The traffic class “T” is the so-called “transparent traffic class”. Thep-bits of the outermost tag (S-UP of the S-tag, or UP of the VLANtag) remain unchanged, i.e. keep their value which has been assignedby a data unit anywhere upstream.

Explicit provisioning of the flow identification at network-role ports isonly intended in the case of so called external network-networkinterfaces (E-NNIs) connecting to the network of other operators, orto trunking routers, respectively.

Quality of Service provisioning Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 8 5

Page 234: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Performance monitoring....................................................................................................................................................................................................................................

Performance counters On the VC-12, VC-3 or VC-4 termination points connected to a WANport, standard SDH performance monitoring can be activated. Thesame counters that apply for VC-12, VC-3 or VC-4 termination pointson any other port also apply to the VC-12, VC-3 or VC-4 terminationpoints on a WAN port.

Apart from this standard SDH performance monitoring, a limitedamount of counters that are dedicated to LAN/WAN ports are defined.Activation of these counters can be established by setting:

• the LAN/WAN port mode to monitored

• selecting a LAN port or WAN port as active PM point

• setting the PM point type to LAN or WAN.

The supported counters are:

• CbS (total number of bytes sent)

• CbR (total number of bytes received)

• pDe (total number of errored packets dropped)

Note that CbS and CbR are rather traffic monitoring counters thanperformance monitoring counters, as they give insight in the trafficload in all places in the network. pDe is a real performancemonitoring counter as it gives an indication about the performance ofthe network. Only unidirectional PM is supported for theseparameters. See the following figure for the location of themeasurements. Note that because of the difference in units, bytesversus packets, the counters cannot be correlated with each other. Alsothe counter for dropped packets considers only packets dropped due toerrors, and does not include packets dropped due to congestion.

CBS

CBR

PDE

PDE

CBS

CBR

Layer-2switchingfunction

EthernetSDH/SONET

WANLANportport

Features

....................................................................................................................................................................................................................................

2 - 8 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 235: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Performance counters foraggregated ports

The performance counters related to a link aggregation group (LAG)reflect the counts of the signals transmitted/received over all theaggregated ports of the LAG.

Performance monitoring Features

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

2 - 8 7

Page 236: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 237: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

3 Applications

Overview....................................................................................................................................................................................................................................

Purpose This chapter shows the various possible applications ofWaveStar®

ADM 16/1.

ContentsSummary 3-2

STM-N point-to-point (end) terminal application 3-3

STM-16 two fiber add/drop terminal in linearapplications and rings

3-5

Hubbing functionality 3-9

Small cross-connect 3-10

Broadcasting functionality 3-11

Payload concatenation 3-12

Tributary interface mixing 3-14

Ring closure: single ADM interconnecting STM-16and STM-1/4 rings

3-15

Dual Node Interworking (DNI) 3-16

SONET-SDH conversion and interworking 3-17

Multi-service application withTransLAN® card 3-19

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 1

Page 238: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Summary....................................................................................................................................................................................................................................

Introduction The WaveStar® ADM 16/1 is a single, highly flexible product thatsupports a variety of STM-16 network applications.

Based on its flexibility with regard to interface circuit packs andcross-connect capabilities (seeChapter 4, “Description”) the systemsupports a wide range of applications for bandwidth access,service-on-demand and network protection.

The WaveStar® ADM 16/1 can be applied in all three tiers of anetwork, that is: access, regional and backbone. The system allows forgrowth and changing service needs by supporting in-serviceconversions and upgrades. Inherent to its basic design, the systemoperates equally well within fully synchronous as asynchronousenvironments and provides a flexible link between the two.

The WaveStar® ADM 16/1 supports a large variety of configurationsfor various network applications:

• STM-16, STM-4, STM-1 point-to-point (end) terminalconnections. Options are: 0x1 terminal with no line protectionand 1+1 MSP line-protected terminal

• STM-16, STM-4, STM-1 two fiber add/drop terminal in linearapplications and rings

• Hubbing functionality

• Small cross-connect

• Broadcasting functionality

• Payload concatenation:

– Virtual concatenation onTransLAN® card

– Interconnecting ATM systems via VC-4-4c concatenation

• Tributary interface mixing

• Single ADM for interconnection of STM-16, STM-4 and STM-1rings (ring closure)

• Dual Node Interworking (DNI) with drop & continue

• SONET-SDH conversion and interworking

• Multi-service applications withTransLAN® Card, supporting10/100BASE-T and 1000BASE-X Ethernet.

Applications

....................................................................................................................................................................................................................................

3 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 239: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

STM-N point-to-point (end) terminal application....................................................................................................................................................................................................................................

Application description The WaveStar® ADM 16/1 can be configured to provide an STM-16,STM-4, STM-1 point-to-point application (see figure below).

The STM-16, STM-4 or STM-1 point-to-point application is served bytwo 0x1 end terminals (each terminal is equipped with onetransmit/receive circuit pack).

The regenerator can be used to increase the distance between theterminals. The regenerators can be maintained through the endterminals at either span or through a modem at the repeater side. Tospan longer distances without using the regenerators in intermediatenodes, the user can also make use of the in-shelf opticalbooster/pre-amplifiers available for theWaveStar® ADM 16/.1.

Protected point-to-pointapplication

The WaveStar® ADM 16/1 can be configured to provide an STM-N (N= 16, 4, 1) 1+1 MSP protected point-to-point application (seeFigure3-2, “WaveStar® ADM 16/1 1+1 MSP protected end terminal,STM-16 point-to-point application” (3-3)).

The STM-N (N = 16, 4, 1) 1+1 MSP point-to-point application isserved by twoWaveStar® ADM 16/1 end terminals. These terminals

Figure 3-1 WaveStar ® ADM 16/1 0 × 1 end terminal STM-16point-to-point application

ADM 16/1End Terminal

Central Office

ADM 16/1End Terminal

Central Office

Regenerator

Figure 3-2 WaveStar ® ADM 16/1 1+1 MSP protected end terminal,STM-16 point-to-point application

ADM 16/1End Terminal

Central Office

ADM 16/1End Terminal

Central Office

Regenerator

Service

Protection

Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 3

Page 240: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

are equipped with each two STM-N lines, one for service and one forprotection. Each STM-N line consist of a pair of single mode fibers(one transmit, one receive).

The system uses revertive or non-revertive protection switching, thismeans:

• In revertive operation, the traffic is switched from the working tothe protection line if a fault occurs. In this case low prioritytraffic, if connected, is automatically switched off. When the faultclears, the traffic is automatically switched back (revertive) to theworking line.

• In non-revertive operations the traffic is switched from theworking to the protection line, if a fault occurs. In this case lowpriority traffic, if connected, is automatically switched off. Whenthe fault clears, the traffic is not automatically switched back(non- revertive reverts) to the working line.

STM-N point-to-point (end) terminalapplication

Applications

....................................................................................................................................................................................................................................

3 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 241: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

STM-16 two fiber add/drop terminal in linear applications andrings....................................................................................................................................................................................................................................

Summary The WaveStar® ADM 16/1 two fiber add/drop terminal is a flexibleproduct that can be used for ring and non-ring applications, forexample point-to-point linear applications. Linear applications can be“upgraded” to conventional rings.

WaveStar ® ADM 16/1 inlinear applications

The figure below shows theWaveStar® ADM 16/1 add/drop terminalused in a linear application. Both end-nodes areWaveStar® ADM16/1 systems functioning as a 0x1 terminal and the two intermediatenodes are ADMs. There is no route diversity.

Folded or collapsed rings Folded rings are rings without fiber diversity. This is in fact a linearapplication of theWaveStar® ADM 16/1. The terminology derivesfrom the image of folding a ring into a linear segment.

Folded or collapsed rings can be created by using theWaveStar®

ADM 16/1. Sometimes this configuration is also called a “flattenedring”

The WaveStar® ADM 16/1 two fiber add/drop terminals enable theuser to use folded rings in a variety of “non-ring” applications, suchas linear add/drop topologies. Folded rings provide flexibility and canhelp evolve the network into a fully (conventional) ring configuration.

In the folded ring configuration shown inFigure 3-4, “WaveStar®

ADM 16/1 folded or collapsed ring application” (3-5), terminals are

Figure 3-3 WaveStar ® ADM 16/1 linear add/drop application

ADM 16/1 ADM 16/1 ADM 16/1ADM 16/1

Figure 3-4 WaveStar ® ADM 16/1 “folded or collapsed ring”application

ADM 16/1 ADM 16/1 ADM 16/1ADM 16/1

Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 5

Page 242: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

placed at adjacent nodes, and the end nodes are connected togetheracross the whole network.

In a folded ring, all facilities are run in the same path, for example, acable sheath between the nodes. Therefore, in the case of a facility ornode failure, nodes on each side of the failure are isolated, as in thelinear add/drop chain. Because the length of the network is probablylong and the optical loss greater than the system gain of thetransmitter/receiver pairs, there may be a need to use intermediaterepeaters or intermediate ring nodes (ADMs) on the return path toconnect the end nodes.

WaveStar ® ADM 16/1 inring applications

Rings provide redundant bandwidth and/or equipment to ensuresystem integrity in the event of any transmission or timing failure,including a fiber cut or node failure. A ring is a collection of nodesthat form a closed loop, in which each node is connected to adjacentnodes. Ring nodes can be made up of theWaveStar® ADM 16/1 twofiber add/drop terminals.

The WaveStar® ADM 16/1 two-fiber add/drop terminal supportstwo-fiber, bi-directional, line switched rings working at STM-16,STM-4 or STM-1 level. At STM-16 level the MS-SPRing protectionmechanism is supported. SNCP is supported at all other levels (seefigure below).

One of the most cost-effective applications of theWaveStar® ADM16/1 is an add/drop terminal functioning at a line speed of 2.5 Gbit/sand dropping traffic at tributary speeds of 2 Mbit/s. Per network

Figure 3-5 The WaveStar ® ADM 16/1 ring application

ADM 16/1 ADM 16/1

ADM 16/1

ADM 16/1

STM-16 Ring

STM-16 two fiber add/drop terminal inlinear applications and rings

Applications

....................................................................................................................................................................................................................................

3 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 243: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

element, up to 504 × 1.5 Mbit/s, 504 × 2 Mbit/s, 48 × 34 Mbit/s, 96× 45 Mbit/s, 96 × STM-0, 32 × 140 Mbit/s, 64 10/100BASE-T, 32× STM-1 or up to 8 × STM-4 can be add/dropped directly from theSTM-16 level.

MS-SPRing protectedSTM-16 rings

When using the already mentioned MS-SPRing protection mechanism,rings from 2 up to 16 nodes are supported (the maximum allowed bythe standard). They perform automatic protection switching (revertive)in less than 50 msec.

In bi-directional line-switched rings under normal conditions, servicetraffic and protection traffic travel in both directions around the ring.Given spans consist of two sets of bi-directional channels: servicechannels and protection channels. Each physical line is shared byservice channels and protection channels. SeeFigure 3-6,“MS-SPRing protected STM-16 rings withWaveStar® ADM 16/1”(3-7).

Upgrading a folded ring toa conventional ring

In a linear add/drop topology, folded rings provide flexibility in theamount of equipment deployed. In many cases a network starts out asa linear add/drop chain because of short-term service needs betweensome of the nodes. It then evolves into a ring later when there is aneed for service and fiber facilities to other nodes in the network. It iseasier to evolve the linear add/drop network into a full ringconfiguration if a folded ring is used in the nodes that have thisshort-term service.

Folded rings have upgrade, operational, and self-healing advantagesover other topologies for this type of evolution.

Figure 3-6 MS-SPRing protected STM-16 rings with WaveStar ®

ADM 16/1

ADM 16/1 ADM 16/1

Service 1 / Protection 2Service 2 / Protection 1

Service 2 / Protection 1Service 1 / Protection 2

STM-16 Ring

STM-16 two fiber add/drop terminal inlinear applications and rings

Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 7

Page 244: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Deploying folded ring technology to evolve a ring network from alinear add/drop chain configuration to a full ring network provides thefollowing advantages:

• A folded ring can be more easily upgraded (that is, in-service) toinclude the new node in a full ring configuration than inback-to-back or linear add/drop configurations.

• A folded ring familiarizes users with the operation,administration, maintenance, and provisioning (OAM&P) of aring.

• In most cases, a folded ring is more cost-effective than deployingback-to-back or linear add/drop configurations.

• A folded ring can recover from some Terminal failures betterthan a linear add/drop chain.

See the figure below for an upgrade example.

Figure 3-7 Upgrade “folded ring” to conventional ring

Site A Site C

Site B

ADM 16/1 ADM 16/1 ADM 16/1

ADM 16/1

Present

Future

ADM 16/1 ADM 16/1

Site A Site C

ADM 16/1

ADM 16/1

Site B

Site D

STM-16 two fiber add/drop terminal inlinear applications and rings

Applications

....................................................................................................................................................................................................................................

3 - 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 245: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Hubbing functionality....................................................................................................................................................................................................................................

Feature description The WaveStar® ADM 16/1 system can be configured to function as ahub-terminal at STM-16 level by deploying theWaveStar® ADM 16/1as an end terminal or add/drop terminal.

The WaveStar® ADM 16/1 can serve a cluster of for instanceWaveStar® ADM 4/1 multiplexers andMetropolis®AM/AMSmultiplexers located at remote sites (see figure below). In this way,the WaveStar® ADM 16/1 Systems can be configured as an STM-16hub. All the traffic for theWaveStar® ADM 4/1 Multiplexers passesthrough the hub using either these electrical or optical interfaces.

Figure 3-8 Example of a hub terminal configuration

ADM 16/1 ADM 16/1

AM/AMS

ADM 4/1

#1

#32

STM-16

STM-1STM-16

Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 9

Page 246: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Small cross-connect....................................................................................................................................................................................................................................

Feature description The WaveStar® ADM 16/1 system can be used to function as a smalllocal cross-connect system. At VC-4 level, a maximum cross-connectcapacity of 64 × 64 is available. For lower order VCs (VC-3 andVC-12s) a maximum of 32 × 32 VC-4s may be opened at any timefor grooming purposes.

This means that within a single shelf e.g. a VC-4, -3, -12cross-connect can be realized to cross-connect a maximum of 64× STM-1 equivalents. A maximum of 32 × VC-4s can be groomed inthe lower order cross-connect (seeChapter 4, “Description”).

64 × STM-1 equivalents can be connected with the higher ordercross-connect as follows: 16 × STM-1s derived from East and 16× STM-1s derived from the West side of the cross-connect, plus32 x STM-1s (8 slots times four STM-1s per circuit pack) from thetributary side. Hence, in total 64 STM-1 equivalent signals areconnected to the higher order cross-connect and can becross-connected at VC-4 level. When the contents of some of theseVC-4s needs to be groomed or Time Slot Interchanged (TSI), amaximum of 32 × bi-directional VC-4s can be connected to the lowerorder cross-connect for this purpose. Cross-connections can be setbidirectionally.

Applications

....................................................................................................................................................................................................................................

3 - 1 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 247: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Broadcasting functionality....................................................................................................................................................................................................................................

Feature description The WaveStar® ADM 16/1 has broadcast functionalities for VC-12,VC-3, VC-4 and VC-4-4c containers. There are two broadcast modespossible, controlled by either the ITM-CIT or theWaveStar® ITM-SC:

• Uni-directional 1:N broadcastA particular incoming VC is retansmitted in multiple (N = 2 9)directions. The return channels remain unused without generatingany alarms.

• 1:2 broadcastThis is meant for test purposes. One of the directions of abi-directional signal is broadcasted to an unused system output

• Uni-directional 1:N broadcast with protectionThe system supports unidirectional cross-connects at the VC-4,VC-4-4c, VC-3 and VC-12 level in ring or linear networks, suchthat up to nine copies of a VC-n can be dropped (broadcasted)uni-directionally to tributary ports from a bi-directional transitVC-n. The go- and return directions of this transit VC-n areusually identical. SNC/N selectors determine which direction ofthe transit signal is dropped towards each tributary port. Thisfeature is to support protected video distribution networks.

Setting up or breaking down a broadcast direction does not affect thetraffic in the other branches.

Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 1 1

Page 248: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Payload concatenation....................................................................................................................................................................................................................................

Summary Within the SDH standards there are two methods defined to createlarger payload capacity than provided by a single VC-12 (payloadcapacity: 2.176 Mbit/s), VC-2 (6.848 Mbit/s), VC-3 (53.760 Mbit/s) orVC-4 (149.760 Mbit/s). These methods are called “virtualconcatenation” and “contiguous concatenation”. In both cases multipleVC’s are taken together to create a bigger capacity transport pipe.

Virtual concatenation In the case of virtual concatenation, the payload is divided overmultiple VCs, which are independently transported through the SDHnetwork. The total transport entity in called VC-n-Xv, where the n isindicating the VC-type (n = 12, 2, 3 or 4) and theX is denoting thenumber of VCs that are taken together to form a virtuallyconcatenated signal. The v stands for “virtual”.

Each VC-n that is part of a VC-n-Xv structure has its own pathoverhead and its own corresponding TU-pointer, so each VC-n istransported independently over the SDH network between theVC-n-Xv termination points. The most popular options beingconsidered are VC-12-Xv (X = 2, , 63) and VC-2-Xv (X = 2, , 21).For transport of these VC-n-Xv types it is required that allparticipating VC-ns are located in the same VC-4. On theWaveStar®

ADM 16/1 virtual concatenation is used on the Ethernet LANtributary card which is based on theWaveStar® TransLAN® card. Onthe Ethernet LAN tributary board Ethernet frames are mapped intoVC-12-xv (x = 1, 2, , 5), VC-3-xv (x = 1, 2) or VC-4-xv (x = 1, 2,3, 4).

Contiguous concatenation Contiguous concatenation is only applicable at the VC-4 level. In thiscase the payload is divided over multiple VC-4s which are carriedover the network as a single block, where the VC-4s are mapped inadjacent AU-4 envelopes. This contiguous group of VC-4s has onlyone single column of path overhead and also has a single pointer,which controls the phase of the complete block. Contiguouslyconcatenated VC-4s are denoted as VC-4-Xc (X = 4, 16, or 64). The“c” indicates the fact that “contiguous” mapping is used.

On order to transport VC-4-Xc payloads through the SDH network, itis necessary that all SDH nodes that are passed through support thismapping. TheWaveStar® ADM 16/1 supports transport of VC-4-4c(payload capacity: 599.040 Mbit/s) via the STM-16 aggregateinterfaces and STM-4 tributary interfaces. The VC-4-4c payload canbe added or dropped via the STM-4 tributary. In addition, protectionof VC-4-4c is supported within the MS-SPRing protection scheme inan STM-16 ring. Also, SNC/N protection is supported to protect the

Applications

....................................................................................................................................................................................................................................

3 - 1 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 249: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

add/drop path via the tributaries or in case MS-SPRing is not used.Lastly, passing VC-4-4c’s can be non-intrusively monitored, both forfaults and performance.

Payload concatenation Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 1 3

Page 250: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Tributary interface mixing....................................................................................................................................................................................................................................

Feature description The WaveStar® ADM 16/1 Multiplexer and Transport Systemsupports a mix of 1.5, 2, 34, 45, 10/100BASE-T Ethernet, STM-0,140, STM-1 and STM-4 tributary speed interface inputs and outputs.It is possible to mix these interfaces in the same subrack for allplatforms. Also, a circuit can enter aWaveStar® ADM 16/1 networkthrough one type and exit through another type (if the payload that isbeing carried is compatible with both interface types). Mixing issupported not only within a Terminal, but also between Terminals.

These capabilities offer more efficient network evolution and allowplanners to improve their equipment deployment based on the needsof the particular application. For example, network needs (suddendemand) may require SDH deployment in one area before others.

Applications

....................................................................................................................................................................................................................................

3 - 1 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 251: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ring closure: single ADM interconnecting STM-16 andSTM-1/4 rings....................................................................................................................................................................................................................................

Two rings working at different or the same line speeds can beinterconnected by a single network element as depicted in the figurebelow.

The WaveStar® ADM 16/1 system has the possibility to function as aring closure network element because the architecture of the systemmakes it possible to have for instance 2 × STM-16 and 2 × STM-1interfaces in one single shelf.

Figure 3-9 WaveStar ® ADM 16/1 used as a ring-closure networkelement

ADM 16/1 ADM 16/1

ADM 16/1

ADM 16/1

STM-16 RingSTM-1/4 Ring

ADM 4/1

ADM 4/1

ADM 4/1

Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 1 5

Page 252: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Dual Node Interworking (DNI)....................................................................................................................................................................................................................................

Two rings working at different or the same line speeds can beinterconnected by two network elements, working in add/drop mode,protected by the Dual Node Interworking (DNI) protection mechanismas depicted in the figure below.

The DNI protection scheme protects the interconnection between twosubnetworks within which the traffic is already protected by anothernetwork protection. This means traffic going from one node to anothermay be MS-SPRing or Path (SNCP) protected and will, in this case,be extra protected in the nodes interconnecting both rings byactivating the DNI protection mechanism in these two nodes.

Figure 3-10 WaveStar ® ADM 16/1 used as DNI network element

ADM 16/1

ADM 16/1

ADM 16/1

STM-16 RingSTM-1/4 Ring

ADM 4/1

ADM 4/1

ADM 4/1

ADM 16/1(DNI node)

ADM 16/1(DNI node)

Applications

....................................................................................................................................................................................................................................

3 - 1 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 253: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

SONET-SDH conversion and interworking....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 supports 2 different ways of interworkingwith SONET signals: interworking by AU-3 to TU-3 conversion andinterworking on OC-3c and OC-12c level.

See also“Mapping structure” (9-20)for more details about thesupported mapping features.

For SONET/SDH interworking theWaveStar® ADM 16/1 supportsthe following feature:

• support of different size (ss)-bit on STM-1/4/16 interfaces (newstandards):

– In the source direction, the transmitted ss-bits can beprovisioned in “10” (SDH mode, default) or “00” (SONETmode)

– In the sink direction the incoming ss bits are ignored.

Interworking via AU-3 toTU-3 conversion

In case of end-to-end DS-3 connection between SONET and SDHnetworks the AU-3 to TU-3 conversion can be used. The SONETnetworks maps the DS-3 into VC-3 and AU-3.

Figure 3-11 OC-3/OC-12 interworking with STM-1o/STM-4o viaAU-3 to TU-3 conversion

Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 1 7

Page 254: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The WaveStar® ADM 16/1 remaps the VC-3 into a TU-3/AU-4structure (see figure below) and terminates the VC-3 on the DS-3tributary interface units.

Direct interworkingbetween OC-3c and

STM-1o and betweenOC-12c and STM-4o

Based on the equivalence between STS-3c and AU-4 pointers orbetween STS-12c and AU-4-4c pointers theWaveStar® ADM 16/1 istransparent for OC-3c and OC-12c signals. Pre-requisite is that theWaveStar® ADM 16/1 operates in AU-4 (for STM-1o) or AU-4-4c(for STM-4) mode. This can be useful for inter-connecting ATMsystems via mixed SONET and SDH networks.

Figure 3-12 Remapping of VC-3 from AU-3 to TU-3/AU-4

Figure 3-13 OC-3c/OC-12c interworking with STM-1o/STM-4o

SONET-SDH conversion and interworking Applications

....................................................................................................................................................................................................................................

3 - 1 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 255: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Multi-service application withTransLAN® card....................................................................................................................................................................................................................................

The Ethernet LAN tributary card which is based on theTransLAN®

card, enables theWaveStar® ADM 16/1 to provide Ethernet overSDH, and offers variable data applications on top of the traditionalTDM applications. Thus it offers cost-effective, simple and reliablemulti-service solutions.TransLAN® can provide VLAN function, andbandwidth can be shared for different customers.

Direct LAN-to-LANinterconnect (two LANs)

The most straight-forward application of the Ethernet LAN tributarycard is to interconnect two LAN segments over a distance whichcannot be bridged with a simple Ethernet repeater, since that wouldviolate the collision domain size rules. Both LANs do not have to beof the same speed. It is possible to interconnect a 10BASE-T,100BASE-TX or a 1000BASE-SX/LX LAN this way. Such anapplication is shown in the figure below.

Direct LAN-to-LANinterconnect (multiple

LANs)

A next step in complexity is to interconnect multiple LANs atdifferent locations. It is possible to associate a single LAN port withtwo or more WAN ports. This way multiple sites can be

Figure 3-14 Example of direct LAN-LAN interconections

Applications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 1 9

Page 256: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

interconnected, forming a fully Layer 2-switched WAN Ethernetnetwork. This application is shown in the figure below.

LAN-ISP interconnect An extension of the previous application is to have one LAN drop ofa multi-point LAN-to-LAN interconnection at the point of presence ofan ISP (Internet Service Provider), to provide for instance internetaccess to the users in the company LANs.

Multiple customers sharinga WAN connection

To increase the efficiency of the bandwidth usage, it is possible toroute the Ethernet traffic of multiple end-users over the same SDHfacilities. This feature is called Switched Network and makes use ofcustomer-specific Ethertypes. The tagging scheme is derived from the

Figure 3-15 Example of direct LAN-LAN interconections

Figure 3-16 GbE Point multi-point services example

Multi-service application withTransLAN®

cardApplications

....................................................................................................................................................................................................................................

3 - 2 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 257: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

arising standard IEEE 802.1ad to separate the traffic of the differentusers. This application is shown in the figure below.

VLAN trunking At the ISP premises, the aggregated LAN traffic from multiplecustomers (i.e. multiple VLANs) via one single high capacity Ethernetlink (Fast Ethernet or Gigabit Ethernet) to data equipment in a CentralOffice or ISP POP such as an IP edge Router, IP Service Switch orATM Switch, can be handled by means of the VLAN trunking feature.VLAN trunking is a possible application of the new IEEE 802.1adVLAN Tagging scheme supported in the Earth Release and theSpanning Tree Protocol.

Main benefit of the VLAN trunking feature is thatTransLAN® cardscan hand off end user LAN traffic via one high capacity LAN portinstead of multiple low speed LAN ports, thus reducing port, space

Figure 3-17 Example of a LAN-VPN application

Multi-service application withTransLAN®

cardApplications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 2 1

Page 258: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

and cabling costs. In the figures below, examples are given ofdifferent VLAN Trunking applications.

DCN support with EthernetLAN tributary unit

The Ethernet LAN tributary unit can also be used for DCNengineering purposes. An important application in this respect is touse the Ethernet interfaces to make a long distance Q-LANconnection. This solution can replace the current solution that usesexternal modems or routers. It is often cheaper and easier to manage

Figure 3-18 VLAN trunking example

Figure 3-19 Ethernet to GE trunking example

Multi-service application withTransLAN®

cardApplications

....................................................................................................................................................................................................................................

3 - 2 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 259: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

if the long distance Q-LAN connection can be made over the SDHinfrastructure (at the cost of the bandwidth of a few VC-12s).

The DCN application of the Ethernet LAN tributary card assumes theWaveStar® ITM-SC co-located with at least one of the NEs equippedwith this tributary card (e.g.Metropolis® AM/;MS, WaveStar®ADM16/1 Compact orWaveStar® ADM 16/1). In such case, one canconnect the Ethernet port of theWaveStar® ITM-SC to one of thedesignated 10BASE-T/100BASE-TX LAN ports and configure theassociated WAN port with desired bandwidth (e.g., VC-12) to carrythe management traffic.

Figure 3-20 DCN support with Ethernet LAN tributary unit

Multi-service application withTransLAN®

cardApplications

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

3 - 2 3

Page 260: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 261: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

4 Description

Overview....................................................................................................................................................................................................................................

Purpose This chapter provides a more detailed view of the system compositionand the shelf complements of theWaveStar® ADM 16/1 Multiplexerand Transport System. The system functions and circuit packs aredescribed following the description of the system architecture, thepartitioning of the circuit packs in the system, and the physical design.Additional information is provided relating to timing architecture,equipment redundancy and protection.

ContentsBasic WaveStar® ADM 16/1 architecture 4-2

Shelf complements 4-6

Electrical paddle boards 4-8

Circuit packs 4-9

Timing and synchronization 4-39

Redundancy and protection 4-44

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 1

Page 262: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Basic WaveStar® ADM 16/1 architecture....................................................................................................................................................................................................................................

Interfaces and signal types This very flexible product resulted from a great step forward intechnology. Owing to the high level of integration at circuit-packlevel, it is possible to add/drop up to 504 × 1.5 Mbit/s, 504 × 2Mbit/s, 48 × 34 Mbit/s, 96 × 45 Mbit/s, 64 × 10/100BASE-TEthernet, 16 × GbE (Gigabit Ethernet), 96 × STM-0, 32 × 140Mbit/s, 32 × STM-1 or 8 × STM-4 signals using only one subrack.

The WaveStar® ADM 16/1 is a multiplexer and transport system thatmultiplexes a broad range of plesiochronous and synchronous signalsinto 2.5 Gbit/s (STM-16), 622 Mbit/s (STM-4) or 155 Mbit/s(STM-1). The method used to map the interface signals complies withthe ITU-T specified AU-4 mapping procedure. STM-1 and STM-4optical tributary interfaces also support AU-3 mapped signals.

The system can be used as an add/drop multiplexer, terminalmultiplexer or small local cross-connect. It provides built-incross-connect facilities and flexible interface circuit packs. Local andremote management and control facilities are provided via the Q andF interface and the embedded communication channels. Thecross-connect circuit pack is the core of theWaveStar® ADM 16/1system.

Basic architecture An outline of the basicWaveStar® ADM 16/1 architecture is given inthe figure below.

Figure 4-1 WaveStar ® ADM 16/1 basic architecture

Description

....................................................................................................................................................................................................................................

4 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 263: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The cross-connect The cross-connect is the core of theWaveStar® ADM 16/1 system.The cross-connect circuit pack functionally consists of two parts: aHigher and a lower order cross-connect, although physically thecross-connect circuit pack is a single circuit pack.

The higher order cross-connect switches VC-4s and its capacity is 64× 64. Other functions of the higher order cross-connect are: VC-4SNC protection switching, MS-SPRing protection, MSP, equipmentprotection of tributary slots (see“Redundancy and protection” (4-44)andChapter 2, “Features”for detailed explanations of mentionedprotection mechanisms), non-intrusive monitoring of VC-4s andbroadcasting.

The lower order cross-connect switches/grooms VC-3 and VC-12s andits capacity ranges up to 2016 × 2016 VC-12s equivalents or 32 × 32VC-4s. Other functions of the lower order cross-connect are: lowerorder SNCP protection, non-intrusive monitoring of lower order VCsand lower order broadcasting.

Tributary and line interfaces circuit packs are directly connected to thehigher order cross-connect via STM-1 equivalent signals.

Higher- and lower order cross-connect parts are interconnected via aninternal cross-connect-bus of 32 bi-directional VC-4s wide. The lowerorder cross-connect itself is uni-directional although traffic can beswitched/protected bi-directionally (= default situation).

Higher Order VC-4s arriving from line or tributary circuit packs needonly to be routed through the lower order matrix, if the lower orderVC content needs to be groomed. Otherwise, the VC-4 can be routedthrough the higher order cross-connect only.

Flexible routing and cross-connecting of VC-4, VC-3 and VC-12between line port↔ line port, line port↔ tributary port andtributary port↔ tributary port is possible.

The system architecture makes it possible to use an interface circuitpack in almost any other slot position, hence the system becomes veryflexible. A broad range of applications can be served with the sameshelf based on a common software platform.

To contribute to overall system reliability and availability, thecross-connect circuit pack can be 1 + 1 equipment protected by anaccompanying circuit pack.

Fixed cross-connect The fixed connection unit replaces the (working) cross-connect unit toprovide a 0:1 or 0:2 terminal configuration, in which the (16) VC-4sof four tributary units are routed towards one line port unit and the(16) VC-4s of four other tributaries are routed towards the other line

Basic WaveStar® ADM 16/1 architecture Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 3

Page 264: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

port unit. The protection cross-connect slot remains unassigned, aswell as one of the tributary slots. The tributary units can be all types,but it is understood that if a PI-E1/63 is used, then 3 VC-4’s worth ofline capacity become unreachable for each inserted PI-E1/63 unit.

No equipment protection of tributary cards is supported, nor of linecards or cross-connect units. Only the PT unit can be protected.Network protection schemes like MSP, MS-SPRing or SNCP are notsupported either.

Interface circuit packs The WaveStar® ADM 16/1 supports a large variety of interface circuitpacks: 1.5, 2, 34, 45, 140 Mbit/s, 10/100BASE-T Ethernet, GbE(Gigabit Ethernet), STM-0, STM-1, STM-4 and STM-16 are thecircuit packs that can be used. If required, interface redundancy canbe provided. For details of these circuit packs please refer to“Circuitpacks” (4-9)described later in this chapter.

System control andmanagement

The System Controller (SC) controls and provisions all circuit packsvia a local LAN bus. The SC also provides the external operationsinterfaces for office alarms, miscellaneous discretes and connections tothe overhead channels (a maximum of six overhead bytes may beselected to be connected to six connectors on the interconnectionbox).

The SC also facilitates first line maintenance by several LEDs andbuttons on the front panel. General status and alarm information isdisplayed. Various controls and an F interface connector, for a localmaintenance PC (ITM-CIT), are also located on this panel.

The SC communicates with the centralized management system(WaveStar® ITM-SC andNavis® Optical NMS).

Communication is established via so-called data communicationchannels (DCC = D1-3/D4-12 bytes), within the STM-N sectionoverhead signals or via one of the Q-interfaces of the system.Information destined for the local system is routed to the SystemController, while other information is routed from the node via theappropriate embedded channels of the STM-N line or tributary signals.

The WaveStar® ITM-SC manages theWaveStar® ADM 16/1 at theelement level and theNavis® Optical NMS manages the system at thenetwork level. The ITM-Craft Interface Terminal (ITM-CIT) can beused for managing small networks and for maintenance.

Power and timing circuitpack (PT)

The WaveStar® ADM 16/1 can be equipped with one or two powerand timing circuit packs (PT).

Basic WaveStar® ADM 16/1 architecture Description

....................................................................................................................................................................................................................................

4 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 265: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Power

A basic function of the PT circuit pack is to filter and stabilize theincoming station power in Order to meet the necessary ETSIrequirements. The basic power distribution philosophy throughout theWaveStar® ADM 16/1 is to equip each circuit pack with on-boardDC/DC converters that convert the customer’s secondary (stationbattery) voltage to the voltages required for each circuit pack. Thepower feed from the station battery voltage is maintained duplicatedthroughout the system’s backplane.

Timing

Another basic function of the PT is system timing. The localoscillator, also called the SDH Equipment Clock (SEC), can besynchronized to one of the user-selectable timing references. There aretwo types of PT circuit packs available: one so-called standard PTwith a standard hold-over stability of 2048 kHz 4.6 ppm and one witha more accurate hold-over stability frequency of 2048 kHz 0.37 ppm(Stratum-3).

Basic WaveStar® ADM 16/1 architecture Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 5

Page 266: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Shelf complements....................................................................................................................................................................................................................................

Summary The WaveStar® ADM 16/1 is a single-row subrack designed forapplication in 600-mm deep ETSI rack frames.

The shelf of the D700 type construction provides the facilities tohouse theWaveStar® ADM 16/1 circuit packs. It consists of themechanics, a backplane and an integrated interconnection box (ICB).Via the interconnection box access to overhead channels, stationalarms, miscellaneous discrete input s and outputs and Q-LAN ispossible.

Cabling to the customer is pre-fabricated and will be connected to therear of the subrack. If protection or impedance conversion is needed,special paddle boards can be inserted between customer cabling andthe backplane. Optical interfaces are located on the front (STM-4 andSTM-16 signals) and rear (STM-0 and STM-1 signals) of the system.

Subrack The subrack is called the high-density subrack. An integrated fan unitcools the system circuit packs. This fan unit is part of theWaveStar®

ADM 16/1 subrack.

High-density shelf The high-density shelf (Figure 4-2, “WaveStar® ADM 16/1 highdensity shelf (EFA4) configuration” (4-7)) is provided with:

• 1 slot for the system controller (SC)

• 2 slots for the line circuit packs (SI-16)

• 2 slots for the cross-connect circuit packs (CC)

Description

....................................................................................................................................................................................................................................

4 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 267: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• 9 slots for the tributary circuit packs

• 2 slots for the power and timing circuit packs (PT).

Figure 4-2 WaveStar ® ADM 16/1 high density shelf (EFA4)configuration

FRONT VIEW

SC

CC

1

TS

1

LS 1

TS

2

TS

3

TS

4

TS

5

TS

6

TS

7

TS

8

TS

9

CC

2

LS 2

PT

1P

T 2

Stationclock

Shelf complements Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 7

Page 268: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Electrical paddle boards....................................................................................................................................................................................................................................

Summary A variety of paddle boards exists for connection between customercabling and the backplane in case of protection or impedanceconversion. All paddle boards can be inserted from the rear of theequipment and fit on the 2 mm-pitch backplane connectors.

The paddle boards contain the hardware to adjust the impedance or toprovide equipment protection.

Table 4-1 Paddle boards

Bitrate Name Function Additionalinformation

1.5 Mbit/s PB-DS1/100/32 75 to 100Ω impedance conversionboard, 32 channels

Two identical 1.5Mbit/s paddle boardsare mounted behaind aworker circuit pack toprovide impedanceadaptation.

PB-DS1/P100/32 75 to 100Ω impedance conversionboard, 32 channels + protection board

2 Mbit/s PB-E1/75/32 Direct through-connections paddleboard, 32 channels, 75Ω

All 2 Mbit/s paddleboards are mountedbehind the workercircuit packs. Nopaddle board is neededbehind the protecting 2Mbit/s circuit pack.

PB-E1/P75/32 Protection paddle board, 32 channels,75 Ω

PB-E1/120/32 75 to 120Ω impedance conversionpaddle board, 32 channels

PB-E1/P120/32 75 to 120Ω impedance conversion +protection paddle board, 32 channels

34/45 Mbit/s PB-E3DS3/6 Protection paddle board, 6 channels The PB-E3DS3/6 ismounted horizontallyacross the worker andthe protecting circuitpack.

STM-1e /140 Mbit/s

PB-1E4/PW/2 Protection paddle board to be used incombination with “worker” circuitpacks, 2 channels

PB-1E4/PP/2 Protection paddle board to be used incombination with “protection” circuitpack, 2 channels

10/100BASE-TEthernet

PB-LAN/4 Paddle board with 4 interfaces withoutprotection to be used in combinationwith IP-LAN/8 circuit packs.

For more details on equipment protection, seeChapter 8, “Systemplanning and engineering”.

Description

....................................................................................................................................................................................................................................

4 - 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 269: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Circuit packs....................................................................................................................................................................................................................................

Introduction Figure 4-1, “WaveStar® ADM 16/1 basic architecture” (4-2)showsthe types of circuit pack that can be used with theWaveStar® ADM16/1 system.The interface circuit packs are briefly described here. Foran explanation of the naming of the circuit packs, please refer toChapter 8, “System planning and engineering”.

Optical interface circuitpacks

The WaveStar® ADM 16/1 can be equipped with STM-16, STM-4,STM-1 and STM-0 optical interface circuit packs, which are availablein several types. Options for STM-16 are 1310 nm (long-haul), 1550nm (long-haul). Options for STM-1 and STM-4 are 1310 nm(short-haul) and 1550 nm (long-haul). STM-0 optical units are usingthe 1310 nm short-haul version.

All STM-4 and STM-16 optical packs are equipped with a universalbuilt-out optical connector type, allowing the connector type to FC/PCor SC to be changed on-site depending on the customer needs.

The STM-1 optical circuit packs do have a SC-connection with aconversion possibility to FC/PC.

The STM-0 does have a LC-connection with a conversion possibilityto FC/PC or SC.

The WaveStar® ADM 16/1 can also be equipped with GbE Pluggableoptical option cards up to a maximum of 8.

For optical interfaces located on main plug-in units, the access isthrough the front of the system, directly to the connector on the frontof the unit in question. For optical interface located on paddle boards,the access is via the rear of the system, directly on the opticalconnector on the respective paddle board.

STM-16 optical line port units

All power budgets indicated below are “end-of-life”.

• SI-L 16.1/1C and SI-L 16.1/1D (1310 nm ITU, ITU-T G.957)

– 1024 dB over G.652 fiber at a BER of 1 × 10–10 (L-16.1)Including 2 dB margin for temperature and aging and 1 dBoptical path penalty.

– 1023 dB over G.652 fiber at a BER of 1 × 10–12 (L-16.1)Including 2 dB margin for temperature and aging and 1 dBoptical path penalty.

• SI-L 16.2/1C and SI-L 16.2/1D (1550 nm ITU, ITU-T G.957)

– 11-24 dB over G.652 fiber at a BER of 1 × 10–10 (L-16.2)

Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 9

Page 270: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Including 2 dB margin for temperature and aging and 2 dBoptical path penalty (i.e. up to 1800 ps/nm dispersion).

– 11-25 dB over G.653 fiber at a BER of 1 × 10–10 (L-16.3)Including 2 dB margin for temperature and aging and 1 dBoptical path penalty.

Optical amplifier

Special circuit packs has been developed to bridge ultra-long distances(up to 160 km) that amplifies the transmitted and received signals.This circuit pack can be placed in any slot position normally used fora tributary circuit pack.

Booster pre-amplifier:

• LBPA-U 16.2/1This circuit pack has to be mounted in front of a transmitter, inone of the tributary slots.

• SI-EML U16.2/1 (1550 nm, ITU-T draft rec. G.691)

– 33-44 dB over G.652 fiber at a BER of 1 × 10–12 (U-16.2)Including 2 dB margin for temperature and aging and 2 dBoptical path penalty.

– 33-45 dB over G.653 fiber at a BER of 1 × 10–12 (U-16.3)Including 2 dB margin for temperature and aging and 1 dBoptical path penalty.

Booster:

• LBA-V16.2/1 (1550 nm, ITU-T G.691 V-16.2/3)This circuit pack has to be mounted in front of a transmitter, inone of the tributary slots.

Circuit pack for interworking with WaveStar ® OLS 1.6T

Eighty different wavelengths, with compatible optics (STM-16) areavailable for interworking with theWaveStar® OLS 1.6T:

• SI-16EMLx/1 (x ranging from 9190 to 9585 (15301565 nm)).x represents the frequencies, which range from 191.90 THz to195.85 THz in steps of 50 GHz

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 1 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 271: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Two simple WDM coupler units (Gould KIT ASSY MODULE WDMKIT, comcode 848270682) can be mounted in the system to allowsingle fiber operations:

• Co-directional 2 wavelength WDM operation:It is possible to combine the optical signals from the lineinterfaces of theWaveStar® ADM 16/1 systems, when onesystem operates in the 1310 nm region and the other in the 1550nm region, so that the optical signals travel in the same direction.The net power budget for this type of operation on standard fiber,after subtracting the coupler and extra connector losses is 20 dBat 1 × 10–10 BER.

• Contra-directional 2 wavelength WDM operation:It is possible to combine the optical transmit and receive signalsfrom the line interface of oneWaveStar® ADM 16/1 system,when one direction operates in the 1310 nm region and the otherin the 1550 nm region, so that the optical signals travel oppositedirections of each fiber. The net power budget for this type ofoperation on standard fiber, after subtracting the coupler andextra connector losses is 20 dB at 1 × 10–10 BER.

Optical interfaces for tributaries (STM-0 and STM-1)

The optical interface circuit packs listed below must always be usedtogether with a tributary circuit pack (SA-0/12, SIA-1/4B orSPIA-1E4/4B) described later in this chapter. They must be mountedbehind the tributary circuit pack (just like a paddle board). See alsoChapter 8, “System planning and engineering”. These circuit packsprovide the optical circuits and are provided with an optical connector.Via a patch panel with a fiber management system this connector canbe converted to a SC or FC/PC connector.

An optical interface paddleboard contains 2 × STM-1 or 6 × STM-0Interfaces, to be used together with the tributary circuit packs:

• OI-S 1.1/2 (1310 nm, ITU-T G.957)0-12 dB at a BER of 1 × 10–10 (S-1.1) (STM-1)

• OI-L1.2 (1550 nm):1028 dB at a BER of 1 × 10–10 (L-1.2).

• OI- 0/6 (1310 nm):0-10 dB at a BER of 1 × 10–10 (STM-0)

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 1 1

Page 272: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Optical interfaces for tributaries (STM-4)

There is also an optical interface for a STM-4 signal on a tributaryport. This circuit pack has front access and does not use opticalinterfaces at the backside.

• SI-S 4.1/1 (1310 nm, ITU-T G.957)0-12 dB (1 × 10–10 sensitivity) at an operating wavelength of1310 nm.

• SI-L 4.2/1 (1550 nm, ITU-T G.957)1024 dB (1 × 10–10 sensitivity) at an operating wavelength of1550 nm

Optical Gigabit Ethernet interfaces (1000BASE-X)

The WaveStar® ADM 16/1 can also be equipped with 1000BASE-Xtributary units. The circuit pack IP-GE/2 (LJB460) provides twointerfaces for which the follwing pluggable optics are available:

• 1000BASE-SX (850 nm short haul, multi-mode)

• 1000BASE-LX (1310 nm long haul, multi-mode or single-mode)

The optical interfaces are present at the front-side of the system viaLC connectors. Please refer also to“1000BASE-X Gigabit Ethernettributary board; IP-GE/2, (LJB460)” (4-34).

Electrical tributaries circuitpacks

The electrical tributaries circuit packs contain the low-speedinterfaces. The interface circuit packs provide the plesiochronousinterface circuits or synchronous STM-1 interfaces and alignment intoTUs.

The following electrical interface circuit packs can be provided:

• PI-DS1/63: 63 × 1.5 Mbit/s interfaces per circuit pack

• PI-E1/63: 63 × 2 Mbit/s interfaces per circuit pack

• PI-E3/6: 6 × 34 Mbit/s interfaces per circuit pack

• PI-DS3/6: 6 × 45 Mbit/s interfaces per circuit pack

• PI-DS3/12: 12 × 45 Mbit/s interfaces per circuit pack

• PI-E3DS3/6+6 6 × 34 Mbit/s and 6 × 45 Mbit/s interfaces percircuit pack

• PI-E3DS3/12 12 × 34 Mbit/s or 45 Mbit/s interfaces per circuitpack (ports independently provisionable)

• SPIA-1E4/4B: 4 × STM-1e/140 Mbit/s interfaces per circuit pack

• SIA-1/4B: 4 × STM-1e interfaces per circuit pack

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 1 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 273: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• IP-LAN/8: 8 × 10/100 Mbit/s BASE-T interfaces per circuit pack(Ethernet stream is mapped into 1 to 4 VC-12s),

• IP-LAN 8 Tlan+: 8 × 10/100 Mbit/s BASE-T interfaces percircuit pack (Mapping of Ethernet traffic into VC-12xv andVC-3-xv).

Ethernet/Fast Ethernettributary board, IP-LAN 8

Tlan+, (LJB459)

On theWaveStar® ADM 16/1 an Ethernet/Fast Ethernet tributaryboard (IP-LAN 8 Tlan+) is available providing eight 10/100BASE-TEthernet interfaces. This tributary board is based on theTransLAN®

solution. When equipped with an E/FE tributary board, LucentTechnologies’ SDH multiplexers can offer besides TDM services likeDS1, E1, E3/DS3, E4, STM-1, STM-4 and STM-16 interfaces also10/100BASE-T Ethernet interfaces. Below a description is given ofthe E/FE tributary board functionality supported by theWaveStar®

ADM 16/1.

An E/FE tributary board, based on theTransLAN® solution, is alsoavailable for theMetropolis® AM/AMS and Metropolis® ADM 16/1Compact. Please refer to the respective Application and PlanningGuides (APG).

Speed, cable, connector

The LAN interfaces that are supported are 10BASE-T and100BASE-TX. The numbers “10” and “100” indicate the bit-rate ofthe LAN, 10 Mbit/s and 100 Mbit/s respectively. The “T” or “TX”indicates the wiring and connector type: Twisted pair wiring withRJ-45 connectors.

The actual LAN speed does not need to be configured, since theEthernet interfaces support the auto-negotiation protocol, whichenables them to select automatically the proper LAN speed.

The auto-negotiation function on the E/FE tributary board isconfigurable. This feature allows the auto-negotiation function to bemanually overriden fromWaveStar® ITM-SC or the ITM-CIT. If thisauto-negotiation function is disabled, it is possible to select a specificoperation mode (10 or 100BASE-T, Half/Full-Duplex).

CSMA/CD principles

The Ethernet type that is supported by the E/FE tributary board isaccording to IEEE 802.3 Ethernet, which means that the accesscontrol to the LAN is according to the CSMA/CD principles: carriersense multiple access with collision detection. “Multiple Access”means that all hosts on the LAN may transmit packets whenever theyneed to, provided nobody else is transmitting at the same time:“Carrier Sense”. In case there is simultaneous transmission of two ormore hosts, the “Collision Detect” part of the protocol prescribes how

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 1 3

Page 274: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

this situation needs to be detected and resolved. The larger the size ofa LAN, the higher the probability of collisions, due to the finitepropagation times of the frames over the LAN. For this reason, thereare rules about minimum frame lengths and maximum LAN sizes.LAN’s can only be made larger by splitting them in multiple“collision domains”. Within each collision domain, the normalCSMA/CD rules apply.

Traffic between collision domains needs to be transported via aspecial device known as a bridge. The bridge can store frames fromone collision domain and forward it in another collision domain oncethe LAN is free. AWaveStar® ADM 16/1 equipped with E/FEtributary boards contains this bridge functionality, which allows tohave virtually unlimited distances between the LAN’s that need to beinterconnected.

To end-users, the “TransLAN® Network” (a network built withMetropolis® AM/AMS, WaveStar® ADM 16/1 Compact andWaveStar® ADM 16/1 equipped with E/FE tributary boards), appearsas a single bridge interconnecting their CPE LAN’s. Thus, end-usersdo not have to consider the “TransLAN® Network” in the design rules(e.g., number of repeaters, distance, collision domain size) of theirend-to-end Ethernet network. Collision domains interconnected via a“TransLAN® Network” will always be fully separated.

This is in contrast to the situation where theWaveStar® ADM 16/1 isused as a repeater. A repeater just forwards all frames it receives,without considering the destination MAC address. A repeater does notseparate collision domains so the two parts on each side of therepeater should be considered as one Ethernet network.

The implementation of the E/FE tributary board supports startopologies. The maximum LAN segment of CPE LAN’s connected tothe E/FE tributary board should be compliant to the Ethernet LANdesign rules defined in IEEE802.3. As a reference, the maximumdistance from an end device (e.g., PC, host) to an E/FE tributaryboard should be less than 100 meters.

Ethernet communication mode, speed negotiation

Data devices connected through a single collision domain of a FastEthernet LAN usually communicate in half-duplex mode, acommunication method in which a device may either send or receivedata at a given instance, but not both.

The newer design of Ethernet switches and hubs today supports bothhalf-duplex and full-duplex mode of communication. Full-duplexmode is a communication method that allows a device connected tothe switch or hub to simultaneously send and receive data. To supportcommunication in full-duplex mode, it requires the use of full-duplex

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 1 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 275: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

media, the cable/wire that provides independent transmit and receivedata paths. Note: an Ethernet LAN with full-duplex media does notmean automatically that it operates in full-duplex mode.

Before sending and receiving data between two devices connectedthrough an Ethernet LAN, they must both agree to the communicationspeed (e.g., 10 Mbit/s or 100 Mbit/s), communication mode(half-duplex or full-duplex) and support of flow control capability.The auto-negotiation protocol defined in the Ethernet standardspecifies a process to reach such agreement between the devicesduring the device initialization phase. The process uses special signalsto carry the auto-negotiation information between the devices. Wesupport the auto-negotiation protocol and by default, theauto-negotiation function is always on.

In some field cases, it is known that auto-negotiation can fail. InOrder to allow interworking with equipment not supporting thisfunction, theWaveStar® ADM 16/1 supports an option to override theauto-negotiation. The user has the possibility to disable theauto-negotiation and to force the port speed (10 or 100 Mbit/s) andthe half or full-duplex mode.

WAN bandwidth

To facilitate the flexibility of mapping mixed higher layer traffic intoSDH/SONET circuits, and to offer better granularity, ITU-T G.707and G.783 (2000 edition) have recently standardized virtualconcatenation, a byte-level inverse-multiplexing technique. The virtualconcatenation allows the mapping of different types of traffic (e.g,Ethernet, TDM) to individual SDH channels (VCs) that are associatedin a concatenated group. The key difference between contiguousconcatenation and virtual concatenation is the transport between thepath termination. Contiguous concatenation maintains the contiguousbandwidth through-out the whole transport path, while virtualconcatenation breaks the contiguous bandwidth into individual VCs,transports the individual VCs and recombines these VCs to acontiguous bandwidth at the end point of the transmission path.Virtual concatenation requires concatenation functionality only at thepath termination equipment, while contiguous concatenation requiresconcatenation functionality at each network element. Thus virtualconcatenation is perfectly suited for interworking with legacy nodes ina multi-vendor SDH environment, where traffic can be transparentlytransported over the legacy nodes not supporting the feature.

WAN bandwidth is supported and defined based on the amount ofVCs being allocated (provisioned and configured) for it. The E/FEtributary board supports WAN bandwidth of mixed VC types. Theonly limitation is fixed by the maximum capacity between the E/FE

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 1 5

Page 276: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

tributary board and the backplane of theWaveStar® ADM 16/1, i.e.two VC-4.

Ethernet WAN port capacity configuration rules

The encapsulated Ethernet frames are mapped in VC-12 (2 Mbit/s),VC-12-2v (4 Mbit/s), VC-12-3v (6 Mbit/s), VC-12-4v (8 Mbit/s),VC-12-5v (10 Mbit/s), VC-3 (50 Mbit/s) or VC-3-2v (100 Mbit/s). Auser can provision the actual bandwidth per WAN port. Since thebackplane capacity is limited, the total combined bandwidth of allWAN ports together must follow the WAN capacity configurationrules defined in Table .

Please note that only the WAN port bandwidth determines theeffective end-to-end Ethernet communication throughput, not the LANports.

WAN CapacityConfiguration Case

Capacity ofWAN Port 1

Capacity ofWAN Port 2

Capacity ofWAN Port 3

Capacity ofWAN Port 4

Note

1 VC-3-2v VC-12xv VC-12xv VC-12xv x = 0, 1, , 5

2 VC-3 VC-3 VC-12xv VC-12xv x = 0, 1, , 5

3 VC-3 VC-12xv VC-12xv VC-12xv x = 0, 1, , 5

4 VC-12xv VC-3 VC-12xv VC-12xv x = 0, 1, , 5

5 VC-12xv VC-12xv VC-12xv VC-12xv x = 0, 1, , 5

One E/FE tributary board supports 8 ports divided over 2 groups. Thefirst WAN port group (Port 1 to 4) supports the possible combinationof Ethernet WAN port (total of 4) capacity configurations defined inTable .

The second WAN port group (port 5 to 8) of theWaveStar® ADM16/1 supports the same capacity configurations as defined for the firstWAN port group (port 1 to 4).

The E/FE tributary board equippedWaveStar® ADM 16/1 systemkeeps track of the available capacity according to the rules defined inthe WAN port configuration table above. If an attempt to configure anew WAN port capacity violates the rules, not only the system willnot grant the new configuration but also an alarm will be triggeredand displayed.

Port Role Flexibility A LAN port is the interface between the theuser’s Ethernet LAN and the physical switch.

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 1 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 277: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

A WAN port is the internal port between the physical switch and theEoS/GFP device. An Ethernet frame sent by the physical switch on aWAN port is mapped into SDH payload by the EoS/GFP device, anEthernet frame received by the physical switch on the WAN port isdemapped from SDH payload by the EoS/GFP device.

The user can assign a so-called “port role” to WAN ports as well as toLAN ports. In this way it is possible to forward VLAN tags,especially in double-tagging mode, also via LAN ports. Additionally itis possible to run the STP and GVRP protocols on physical LANports, too.

The following port roles are possible:

• Customer role:

– Customer LAN port: Port of the L2 switch connected to anend-user via a physicla Ethernet link.

– Customer WAN port: Port of the L2 switch connected to anend-user via an SDH/SONET link.

• Network role:

– Network LAN port: Port of the L2 switch connected toanother L2 switch in the same operator domain via aphysicla Ethernet link.

– Network WAN port: Port of the L2 switch connected toanother L2 switch in the same operator domain via anSDH/SONET link.

In most cases physical LAN ports have the customer role and physicalWAN ports have the network role, but there may be exceptions insome applications. In the figure below, the WAN port connects anEPL (Ethernet Private Line) link and is therefore at the edge of theTransLAN® network. Thus it has the customer role in this case.

In the example inFigure 4-3, “WAN port in customer role” (4-17)theVLAN tags have to be forwarded to a router. The router uses the

Figure 4-3 WAN port in customer role

LAN unit Ethernet over SDH

EPL link

LAN

WA N port (customer role)

TransLAN networkLAN unit

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 1 7

Page 278: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

tagging information for its switch decisions. Thus the LAN port mustfulfil a network role. In this case behaves like a node of theTransLAN® network. It could also participate in the STP in order toavoid loops, if there was another link from a Router LAN interface toa second node within theTransLAN® network.

A LAN port which operates in the “network role” behaves like aWAN port in terms of VLAN tagging, STP and GVRP.

The default settings are shown in the following table.

Table 4-2 Port roles

Physical ports

Port role LAN port WAN port

Customer role default

Network role default

TransLAN ® operation modes

The physical Layer 2 (L2) switch that is present on an E/FE tributaryboard can be split into several logical or virtual switches. A VirtualSwitch is a set of LAN/WAN ports on an E/FE tributary board thatare used by different VLAN’s which can share the common WANbandwidth. Each of the virtual switches can operate in a specific PortGroup Mode depending on the VLAN tagging scheme, and each PortGroup Mode allows specific LAN-WAN port associations as explainedin the following paragraphs.

First the VLAN tagging mode has to be specified on LAN unit level,this can be either IEEE 802.1Q VLAN tagging or VPN tagging.

VPN tagging mode

For the VPN-tagging scheme, a Virtual Switch is a set of LAN/WANports on a physical switch that are used by a group of end-customerswho can share the common WAN bandwidth. The end-customers

Figure 4-4 LAN port in network role

LAN unitLAN unit (Ethernet over SDH)

LAN TransLAN network

LAN port (ônetwork roleö)

Router

LAN unitLAN unit

Forbidden acc. to STP

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 1 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 279: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

sharing the same Virtual Switch can be separated by their CustomerIdentifiers (CIDs). Virtual Switches are defined by their “VLAN PortMember Set”.

In VPN tagging mode, end-user VLAN tags that optionally mayappear in the end user traffic are ignored in the forwarding process.These VLAN tags are carried transparently through the “TransLAN®

Network”.

IEEE 802.1Q VLAN tagging

IEEE 802.1Q is used as umbrella value for the single-tagging modeIEEE 802.1Q and the double-tagging mode IEEE 802.1ad. For bothmodes a Virtual Switch is a set of LAN/WAN ports on a physicalswitch that are used by different VLANs which can share commonWAN bandwidth. In VLAN-tagging mode, the VLAN tags are alsocarried transparently, but the VLAN ID in the VLAN tags is used inthe forwarding decision. Therefore customers’ VLAN IDs may notoverlap on a physical Ethernet switch, the VLAN IDs must be uniqueper switch pack.

Port group modes

After having provisioned the tagging mode, per virtual switch a “portgroup mode” may be chosen. The E/FE tributary board supports thefollowing port group modes:

• Repeater mode

• LAN-Interconnect

• LAN-VPN

• Spanning Tree Switched Network

IEEE 802.1d MAC forwarding and address filtering, multi-pointbridging and Spanning Tree Protocol (STP) are supported under allmodes of operation, except for the Repeater Mode (IEEE 802.1d(1998 Edition)).

In the table below, an overview of the different modes and a list ofthe corresponding supported functionality is given.

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 1 9

Page 280: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 4-3 Overview of the virtual switch modes

VLAN TaggingMode

Port GroupMode

Ethertype/TPID Dynamic VLANRegistrationProtocol

SpanningTreeImplemen-tation

Tagging

valid per pack valid per Virtual Switch

VPN Tagging Repeater N/A N/A No STP No tagging

LANInterconnect(DedicatedBandwidth)

N/A STVRP MultipleSTP

Doubletagging

LAN-VPN(SharedBandwidth)

N/A

IEEE802.1Q/IEEE802.1ad VLANtagging

Spanning TreeSwitchedNetwork

600 FFFF,except for8100

GVRP Single STP Doubletagging

8100 Singletagging

Repeater 600 FFFF,except for8100

N/A No STP No tagging

Repeater mode

The Repeater mode is used for point-to-point connections, the10BASE-T/100BASE-TX LAN ports at both ends of the E/FEtributary board equipped systems are “plug-and-play” devices and noprovisioning is necessary, except that they need to be associated withWAN ports at both ends via a Virtual Switch. Under the Repeatermode of operation, a Virtual Switch contains only one LAN port andone WAN port. In this mode no MAC filtering takes place.

The Repeater mode for VPN tagging is identical to the Repeater modefor IEEE 802.1Q/IEEE 802.1ad VLAN tagging.

The WAN port that supports the Repeater mode requires theprovisioning of the following parameters:

1. WAN port capacity (require manual provisioning) at either 2, 4,6, 8, 10, 50, or 100 Mbit/s

2. Association of the WAN port to a LAN port

3. Create cross-connections between VC-X and TU-X (whereX = 12,or 3).

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 2 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 281: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

LAN-interconnect mode

The LAN-Interconnect Mode of operation offers dedicated WANbandwidth to a single end-user. Under the LAN-interconnect mode, aVirtual Switch must only contain LAN ports with the same CID(Customer ID) to ensure the entire WAN port bandwidth allocated forthe group is dedicated to a single end-user. Any combination of LANand WAN ports is allowed (but with a minimum of two ports to bemeaningful).

LAN-VPN mode

Under the LAN-VPN mode, a number of LAN and WAN ports aregrouped together to form one Virtual Switch. The Virtual Switchcontains LAN ports of multiple end-users sharing the same WANport(s) bandwidth. To safeguard each individual end-user’s data flowand to identify an end-user’s VPN from the shared WAN, the E/FEboard equipped system assigns a CID to each LAN port within aVirtual Switch. The CID of each end-user (or LAN port) must beunique within a shared WAN port to create a fully independent VPN.The VPN provisioning on the WAN ports on the access andintermediate nodes is done automatically by the proprietary protocolSTVRP (Spanning Tree with VPN Registration Protocol) which runswithout operator intervention.

The LAN-VPN mode of operation controls the shared bandwidth bymaking use of the following features:

SDH WAN bandwidth sharing:

Allows multiple end-users to share the same SDH WAN bandwidthwith each end-user being allocated a sub-VC-12-Xv (X = 1, 2, 3, 4, 5)or sub-VC-3 rate of bandwidth. The combined end-user bandwidth isthen mapped to the SDH time-slots and transported in the SDHnetwork as a single data load. The minimum sub-VC-12 rate that canbe configured per end-user at a LAN port is 150 kbit/s.

Strict policing/Oversubscription mode: See“Quality of Service (QoS)”(4-28).

The LAN-Interconnect mode is a special case of LAN-VPN operationwhere a Virtual Switch contains LAN and WAN ports of a singleend-user only. Note the E/FE tributary board can support bothLAN-interconnect and LAN-VPN mode of operations simultaneouslyas long as a Virtual Switch under each operation mode does notinclude the same WAN port(s) used by the other operation.

LAN-VPN with 802.1p QoS mode

This mode is identical to the “normal” LAN-VPN mode, with theaddition of the enhanced Quality of Service features described in theQuality of Service section. These features comprise classification into

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 2 1

Page 282: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

four traffic classes, rate control per flow, rate control per port, andscheduling on egress ports.

Spanning Tree Switched Network

The port group mode “Spanning Tree Switched Network” is still anumbrella value for the operation modes IEEE 802.1Q and IEEE802.1ad which refers to a specific Virtual Switch. The major selectionbetween the two modes is executed by the provisioning of theEthertype (a.k.a. TPID). The Ethertype for the IEEE 802.1Q mode ist8100. The Ethertype for the IEEE 802.1ad mode is a provisionablehexadecimal value between 600 and FFFF, but it must not be 8100. InIEEE 802.1Q and IEEE 802.1ad VLAN tagging mode, a VirtualSwitch is formed by a combination of LAN- and WAN ports on aphysical switch, that are used by different VLANs which can sharethe common WAN bandwidth. Each port can be part of only oneVirtual Switch, but a certain port may be associated with more thanone VLAN. VLANs in the same Virtual Switch are defined by theirVLAN Port Member Set. The ports that are associated with a certainVLAN ID form the VLAN Port Member Set. On ingress, each packetis filtered on its VLAN ID. If the receiving port is a member of theVLAN to which a received MAC frame is classified, then the frame isforwarded. If not, then that frame shall be discarded. The user canprovision whether untagged packets are dropped, or tagged with aPVID (Port VLAN ID), via the acceptable frame type parameter.

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 2 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 283: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The VLAN trunking example in figure below is one of the possibleapplications in the IEEE 802.1Q mode.

VLAN IDs assigned to LAN Ports should not overlap in case theoperator wants to ensure Layer 2 security between those LAN Ports(In many applications, LAN Ports are likely to be dedicated to onecustomer). It is the responsibility of the operator to defineappropriately non-overlapping VLAN IDs on all the created virtualswitches. Also the provisioned PVID, with which untagged incomingframes are tagged, should not overlap with any VLAN ID on thevirtual switch of which the customers’ port is part (again, this is theresponsibility of the operator).

Manual provisioning of intermediate nodes can be cumbersome anddifficult. Therefore it is recommended to use the auto-provisioningmode for VLAN ID’s on the intermediate nodes. A protocol namedGVRP (Generic VLAN Registration Protocol provides this

Figure 4-5 VLAN trunking application example

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 2 3

Page 284: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

functionality. GVRP is an application of the Generic AttributeRegistration Protocol (GARP) application, which runs on top of theactive spanning tree topology.

IEEE 802.1Q defines two kinds of VLAN registration entries in theBridge Filtering Database: static and dynamic entries. The staticentries can only be entered by the user, the dynamic entries are addedautomatically by the GVRP protocol. In the E/FE tributary boardimplementation, static entries need to be provisioned only on accessnode’s LAN ports. GVRP will take care of configuring dynamicentries on the WAN ports of intermediate and access nodes.

A spanning tree per virtual switch is implemented. If the user wantsthe traffic to be protected by the spanning tree protocol and he usesthe manual provisioning mode, he must make sure that the WAN portsin the alternative path also will have the corresponding VLAN IDassigned. E.g. in a ring topology, all NE’s in the ring must beprovisioned with this VLAN ID. In automatic mode, the GVRPprotocol will take care of the dynamic VLAN provisioning.

The user has the possibility to flush dynamic VLAN’s, thus removedynamic VLAN’s that are no longer used.

For the 802.1Q VLAN tagging mode, the Oversubscription Mode isnot supported.

Only independent VLAN learning is supported on the E/FE tributaryboard. This means, if a given MAC address is learned in a VLAN, thelearned information is used in forwarding decisions taken for thataddress only relative to that VLAN.

Spanning Tree Protocol

Ethernet MAC service does not permit duplication of Ethernet framesbetween any source and destination end station pair. The potential forframe duplication in a bridged network (e.g., LAN) happens whenmultiple paths between the source and destination end station pair.When multiple paths exist between any source-destination pair, a loopoccurs in the bridged network.

IEEE 802.1d (1998 Edition) defines Spanning Tree Protocol (STP) toprevent a bridged network (e.g., LAN) from creating network loops.By using the STP, bridges communicate to each other by exchangingBridge Protocol Data Units (BPDUs) configuring a simple connectedactive topology. Frames are forwarded through some of the bridgedports (with forwarding state) but not to the ports/segments, which areheld in a blocking state. Ports that are in a blocking state do notforward frames in either direction but may be put into a forwardingstate should the active topology and path fail. With STP, the algorithmensures that only one active path will be used to forward frames from

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 2 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 285: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

any source port to any destination port. The STP algorithm usesbridge priority, port priority and path cost to compare and select anactive path.

The user can track back the path from a NE to the root bysuccessively retrieving the Root Port for each NE in the path. Theuser can influence the STP choice of root and topology by modifyingthe bridge/port priority of individual bridges/ports and the path cost ofindividual links. This influence is indirectly however, the SpanningTree Protocol itself will evaluate all these parameters to determine theroot and calculate a topology.

The STP support in the “TransLAN® Network” is invisible toend-users because STP is only applied to WAN ports to resolve loopsin the WAN network. The end-user’s BPDUs are transportedtransparently through the “TransLAN® Network”. Therefore, toend-users connected to the “TransLAN® Network” through LANports, the “TransLAN® Network” appears like a single bridge thatdoes not support STP. See the figure below.

Consequently, LAN ports of the E/FE board should not beinterconnected without a STP supporting bridge in between in order toavoid loops in the interconnected LAN ports. SeeFigure 4-7,

Figure 4-6 Spanning tree separation

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 2 5

Page 286: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

“Examples of loops not detected when running ST on WAN portsonly” (4-26) for examples of wrongly configured networks.

The Ethernet bridge diameter is defined as the maximum number ofnodes between any connection in the active spanning tree topology,the access nodes included. There is an upper limit for the diameter inany practical application. If the diameter exceeds this limit, there is arisk that re-convergence of the spanning tree algorithm in case of alink failure will never be reached.

In the VPN tagging mode the maximum diameter is 20, in the VLANtagging mode the maximum diameter is 40.

The E/FE tributary board supports a single STP per Virtual Switchunder LAN-Interconnect mode and a single STP per VPN under theLAN-VPN mode. In the STP Virtual Switch mode, the E/FE tributaryboard supports a single STP per Virtual Switch. When operating in theRepeater mode, the Ethernet virtual bridge (an instance of theTransLAN® Ethernet bridging function) must not participate in a STP.

In the STP Virtual Switch mode, a number of STP status parametersper Port/Virtual Switch are retrievable/editable. The most importantones are the support of Port State retrieval and the support ofBridge/Port Priority provisioning.

The Port State can have one of the following values:

Disabled – The port is disabled completely.

Blocking – BPDUs and normal frames are discarded.

Listening – BPDUs are processed, but normal frames are discarded.The Filtering Database is not updated.

Learning – BPDUs are processed, but normal frames are discardedReceived BPDUs are used to learn addresses and update the FilteringDatabase.

Forwarding – BPDUs are processed and normal frames are forwarded.

Path Cost provisioning:

Figure 4-7 Examples of loops not detected when running ST onWAN ports only

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 2 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 287: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The system sets a default STP path cost for each link which is inverseproportional to the speed (2, 4, 6, 8, 10, 50 and 100 Mbit/s). BPDUsare capable of carrying 32 bits of Path Cost information; however,IEEE Std. 802.1d, 1998 edition and earlier revisions of this standardlimited the range of the Path Cost parameter to a 16-bit unsignedinteger value. The recommended values in IEEE Std. 802.1t-2001,make use of the full 32 bit range available in BPDUs in order toextend the range of link speeds supported by the protocol. In LAN’swhere bridges that use the recommended values defined in the IEEEStd. 802.1d, 1998 edition and bridges that use the recommendedvalues in IEEE Std. 802.1t-2001 are required to inter-operate, eitherthe older Bridges or the new Bridges need to be reconfigured to makePath Cost values compatible. However, this situation is not likely tooccur since the first release of STP in IEEE 802.1Q tagging willsupport the values recommended in IEEE Std. 802.1t-2001.

Bridge Priority provisioning:

Ranges and granularities for Port Priority defined in IEEE Std.802.1d, 1998 edition have been modified in IEEE Std. 802.1t, 2001edition: value range should now be expressed in steps of 4096 insteadof 1. The step values chosen ensure that the low-order bits that havebeen re-assigned cannot be modified (Bridge priority 12 low-order bitshave become a 12-bit system ID extension for Multiple SpanningTrees). The magnitude of the priority values can be directly comparedwith those based on previous versions of the standard, which ensuresfull interoperability. Although the NE and management systemssupport a granularity of 1, it is advised to provision a Port Prioritywith the new granularity of 4096 in order to ensure interoperability.

Port Priority provisioning:

Ranges and granularities for Port Priority defined in IEEE Std.802.1d, 1998 edition have been modified in IEEE Std. 802.1t, 2001edition: value range should now be expressed in steps of 16 instead of1. The step values chosen ensure that the low-order bits that havebeen re-assigned cannot be modified (Port priority 4 low-order bits arenow considered to be part of the Port Number). The magnitude of thepriority values can be directly compared with those based on previousversions of the standard, which ensures full interoperability. Althoughthe NE and management systems support a granularity of 1, it isadvised to provision a Port Priority with the new granularity of 16 inorder to ensure interoperability.

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 2 7

Page 288: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Quality of Service (QoS)

Quality of Service is supported on the E/FE tributary board. It isimplemented as a DiffServ architecture applied to layer 2. See thefigure below for an overview of the implemented functional blocks.

The following table gives an overview of the QoS capabilities pervirtual switch operational mode.

Table 4-4 Overview of the QoS capabilities per operational mode

Operational Mode Flow Classificationon Ingress

Rate Controllingper Flow

Scheduling onEgres

Repeater N/A N/A N/A

LAN-Interconnect/LAN-VPN Per port None, Strict Policing,Oversubscription

One Queue

LAN-VPN with IEEE QoS Per port per UserPriority

None, Strict Policing,Oversubscription

Four Queues, (StrictPriority or WeightedBandwidth perQueue)

Spanning Tree SwitchedNetwork

Per port/ per port perUser Priority

None, Strict Policing,Oversubscription

Four Queues, (StrictPriority or WeightedBandwidth perQueue)

On theWaveStar® ADM 16/1 the responsibility for admission controlis left to the operator. This means there is no check that the Service

Figure 4-8 QoS functional blocks

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 2 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 289: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Level Agreements on already existing connections can be fulfilled,when a new user starts sending data from node A to B. In this respectthe notion of over-subscription factor is important. This is the factorby which the calculated bandwidth, based on e.g. the traffic matricesof the operators sharing a link, exceeds the physically availablebandwidth. Although theoretically the bandwidth can only beguaranteed for an over-subscription factor <= 1, in practice anover-subscription factor of 5-10 can be used without giving problems.Due to the effects of statistical multiplexing it is safe to “sell thebandwidth more than once”. The burstiness of the traffic fromindividual customers that share a common link makes this possible.The Service Level Agreements give a quantification for the “statistics”of the multiplexing.

The provisioning of the classifier and rate controller per flow is doneonly on the ingress customer port. On the network ports, only thescheduler for the egress queues is provisionable.

It is important that some of the QoS settings are provisionedconsistently on all ports throughout the whole customer’s VPNdomain. For the rate controller the mode = none/strict_policing/over-subscription (per virtual switch),

for the scheduler for each egress queue the mode =strict_priority/weighted_bandwidth and corresponding weights (pervirtual switch) must be provisioned consistently.

Classifier

The classifier will determine into which flow each incoming packet ismapped. On customer port ingress, a number of flows can be defined,based on port, user priority, and optionally VLAN ID, but themapping towards egress queue is fixed and based on the user priorityonly. For each flow a rate controller (CIR/PIR value on LAN portsonly) can be specified. If the classifier operational mode is set tomapping-table, each flow will be mapped to a traffic class based onthe value of the user priority only, using a fixed table. Each trafficclass is associated with a certain egress queue. Apart from these flowsbased on input criteria, a default flow is defined for packets that donot fulfil any of the specified criteria for the flows, e.g. untaggedpackets which have no user priority field. If the user specifies thedefault_overriding mode, all incoming packets will go into the defaultflow and are treated the same. The user can specify on port level thedefault user_priority to be added to each packet in the default flow,and the rate controller behavior for the default flow. The same fixedmapping table from user priority to traffic class to egress queue isapplied to packets in the default flow as to packets in the specifiedflows.

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 2 9

Page 290: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

SeeTable 4-5, “Fixed mapping of user priority to egress queue oncustomer ports” (4-30)for the mapping of user priority to traffic classto egress queue on a customer port. Once the traffic class/egressqueue is set for a certain packet at the ingress customer port, thepacket will keep the same traffic class/egress queue throughout thenetwork. A customer should make sure that his packets are markedwith the appropriate user priority, if he wants to use this flowclassification, or use the default_overriding mode otherwise.

Table 4-5 Fixed mapping of user priority to egress queue oncustomer ports

User Priority Traffic Class Egress Queue

0 (000) 1 2

1 (001) 0 1

2 (010) 0 1

3 (011) 1 2

4 (100) 2 3

5 (101) 2 3

6 (110) 3 4

7 (111) 3 4

Note that the egress queue number is not linear increasing with userpriority. This mapping is according to IEEE802.1Q Table 8-2 (case offour traffic classes).

Rate controller

The rate controller is a means to limit the users access to the network,in case the available bandwidth is too small to handle all offeredingress packets. Rate control is supported for every ingress flow onevery LAN port.

On the E/FE tributary board a “color unaware one-rate two-colormarker” is supported, which can be seen as a degenerate case of thetwo-rate three-color marker. “Color un-aware” meant the user cannotprovision the packets with a certain dropping precedence. Markingwill be done only by the rate controller itself.

A two-rate three-color marker is defined by thee colors, specifying thedropping precedence, and two rates as delimiter between the colors.The marker will mark each packet with a certain color, depending onthe rate of arriving packets, and the amount of credits in the tokenbucket. The size of the token bucket will determine how long and fara rate may be surpassed before the packets are marked with a higherdropping precedence.

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 3 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 291: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The three colors indicate:

• Green – low dropping precedence

• Yellow – higher dropping precedence

• Red – The packet will be dropped

The two rates mean:

• Committed Information Rate (CIR): Delimiter between green andyellow packets

• Peak Information Rate (PIR): Delimiter between yellow and redpackets

The one-rate-two-color marker that is currently implemented canoperate in two different modes. The Strict Policing Mode is definedby CIR = PIR and the Over-subscription Mode is defined by PIR =Infinite. The size of the token buckets is implemented as a fixedpercentage of the corresponding rate and is not provisionable.

No policing: In this mode effectively no policing is taking place. Thismode allows each end-user to offer the maximum committed SDHWAN bandwidth. Any additional incoming frames at the ingress LANport that would exceed the physical network port bandwidth will bedropped. The user has no influence on which packets are dropped. Inthis mode effectively applies that CIR = PIR = MAX.

Strict policing mode: This mode allows each end-user to subscribe toa minimum committed SDH WAN bandwidth, or CIR (committed

Figure 4-9 One-ratetwo-color marker

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 3 1

Page 292: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

information rate). This mode will guarantee the bandwidth up to CIRbut will drop any additional incoming frames at the ingress LAN portthat would exceed the CIR. All packets below CIR are marked green,all packets above CIR are marked red and dropped. Note CIR onlyconcerns the Ethernet frame payload; therefore, we recommend theuse of layer 3 traffic rate to define the required CIR at service level.In this mode effectively applies that CIR≤ MAX, CIR = PIR.

Over-subscription mode: This mode allows end-users to burst theirdata flow to a maximum available WAN bandwidth at a giveninstance. When PIR is set to equal to MAX, the physical network portbandwidth, an end-user is allowed to send more data than thespecified CIR. The additional data flow above CIR is tagged with the“drop precedence bit” being set to a higher drop probability. Allpackets below CIR are marked green, all packets above CIR aremarked yellow. In this mode effectively applies that CIR≤ PIR, PIR= MAX.

Dropper

The dropper function will decide whether to drop or forward a packet.On the E/FE tributary board a deterministic dropping from tail whenthe queue is full is implemented. Packets that are marked red arealways dropped. If WAN Ethernet Link congestion occurs, frames aredropped. Yellow packets are always dropped before any of the greenpackets are dropped. This is the only dependency on queue occupationand packet color that is currently present in the dropper function. Noprovisioning is needed.

Scheduler

The preceding functional blocks assure that all packets in the fourqueues can be handled by the scheduler, no further packets need to bedropped. The order in which packets from the four queues areforwarded, is determined by the scheduler.

The scheduler on each of the four egress queues can be in twooperational modes, strict priority or weighted bandwidth. Anycombination of queues in either of the two modes is allowed. Whenexactly one queue is in weighted bandwidth mode, it is interpreted asa strict priority queue with the lowest priority. Normally the queuewith the lowest number also has the lowest ranking order, but thisranking order of the strict priority queues may be redefined by theuser. It is recommended not to change the mode and ranking of thequeue with the highest number (= 4) however, because this queue isalso used by protocol packets like spanning tree BPDU’s and GVRPPDU’s.

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 3 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 293: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Strict priority mode

The packets in strict priority queues are forwarded strictly accordingto the queue ranking. The queue with the highest ranking will beserved first. A queue with a certain ranking will only be served whenthe queues with a higher ranking are empty.

Weighted Bandwidth Mode

The weights of the weighted bandwidth queues will be summed up;each queue gets a portion relative to its weight divided by thissummed weight, the so called normalized weight. The packets in theweighted bandwidth queues are handled in a Round-Robin orderaccording to their normalized weight.

Each of the two modes has his well-known advantages anddrawbacks. Strict Priority queues will always be served beforeWeighted Bandwidth queues. So with strict priority, starvation of thelower priority queues cannot be excluded. Starvation should beavoided by assuring that upstream policing is configured such that thequeue is only allowed to occupy some fraction of the output link’scapacity. This can be done by setting the strict policing rate controlmode for the flows that map into this queue, and specifying anappropriate value for the CIR. The strict priority scheme can be usedfor low-latency traffic such as Voice over IP and protocol data such asspanning tree BPDU’s or GVRP PDU’s.

Weighted Bandwidth queues are useful to assign a guaranteedbandwidth to each of the queues. The bandwidth can of course onlybe guaranteed if concurrent strict priority queues are appropriatelyrate-limited. The assigned weight factor represent 256-byte quanta inthe weighted Round-Robin algorithm. To reduce burstiness betweenthe queue transmissions, the user should strive for minimal weightfactors, which are however bigger than the maximum length of apacket. This will be achieved by a weight factor of at least six(6×256>1500).

Performance monitoring

On the VC-3/VC-12 termination points that are connected to a WANport, the “normal” performance monitoring can be activated. The samecounters that apply for VC-3/VC-12TPs on any other port also applyto the VC-3/VC-12 TP’s on a WAN port.

Apart from this standard SDH PM, a limited amount of counters thatare dedicated to LAN/WAN ports are defined. Activation of thesecounters can be established by setting the LAN port mode tomonitored, selecting a LAN port or WAN port as active PM point,and setting the PM point type to LAN or WAN.

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 3 3

Page 294: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The supported dedicated parameters are:

• CbS (total number of bytes sent)

• CbR (total number of bytes received)

• pDe (packets in error dropped)

Note that CbS and CbR are rather traffic monitoring counters thanperformance monitoring counters, as they give insight in the trafficload in all places in the network. pDe is a real performancemonitoring counter as it gives an indication about the performance ofthe network. Only unidirectional PM is supported for theseparameters. SeeFigure 4-10, “Performance monitoring counters”(4-34) for the location of the measurements. Note that because of thedifference in units, bytes versus packets, the counters cannot becorrelated with each other. Also the counter for dropped packetsconsiders only packets dropped due to errors, and does not includepackets dropped due to congestion.

1000BASE-X GigabitEthernet tributary board;

IP-GE/2, (LJB460)

The Gigabit Ethernet interface supports 1000BASE-SX opticalinterfaces or 1000BASE-LX optical interfaces according IEEE 802.3Clause 38. Full duplex only is supported. SX or LX applications canbe selected by Small Formfactor Plugable module based GigabitEthernet interfaces.

Note: OnWaveStar® ADM 16/1 the 1000BASE-X tributary card isonly supported in combination with Ruby controller hardware(LJB457B) or later.

By using the circuit pack IP-GE/2 Gigabit Ethernet frames can bemapped into VC-3s (50 Mbit/s) and VC-4s (150 Mbit/s). A higherbandwidth can be achieved by virtual concatenation of the VCs. The

Figure 4-10 Performance monitoring counters

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 3 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 295: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

IP-GE/2 provides two optical LAN ports and supports 8 WAN portswith the following virtual concatenation:

• VC-3-xv, x = 1, 2

• VC-4-xv, x = 1, , 4

The maximum capacity of a WAN port is VC-4-4v = 600 Mbit/s.

For basic Ethernet features please refer to“Ethernet/Fast Ethernettributary board, IP-LAN 8 Tlan+, (LJB459)” (4-13). Ethernet LANtributary board, IP-LAN 8 Tlan+, (LJB459). 1000BASE-X specificfeatures are listed below.

• Gigabit Ethernet mapping type for VLAN Trunking (single/dualLAN port, single card)

• Gigabit Ethernet mapping type for Gbe “lite” (single LAN port,single card)

• Ethernet mapping type for WAN-to-WAN grooming/aggregation(single card)

• Mapping of Ethernet MAC frames into VC-4-Xv (GFPencapsulation)

• Mapping of Ethernet MAC frames into (LO) VC-3-Xv (GFP/EoSencapsulation)

• LAN bridge mode on Gigabit Ethernet Hardware

• LAN promiscuous mode on Gigabit Ethernet Hardware

• Multi-port LAN Bridging mode with L2 VPN support for GigabitEthernet

• Layer 2 VPN Data Policing, for Gigabit Ethernet

• Port-based VPN Customer Tagging, for Gigabit Ethernet(Transparent aka double tagging)

• IEEE 802.1Q VLAN Tagging (Gigabit Ethernet)

• Gigabit Ethernet VLAN Trunking

• VLAN Trunking: Fast Ethernet WAN to Giagbit Ethernet LAN

• LCAS for Ethernet (1000BASE-X “lite”)

• Performance Monitoring on LAN connections (Gigabit Ethernetports)

• Rapid Spanning Tree Protocol

• GARP VLAN Registration Protocol (GVRP)

Timing andsynchronization interface

circuit packs

Two types of timing and synchronization interface circuit packs areavailable to provide extra external synchronization in- and outputswith a specific format (besides the station clock in- and outputs on theinterconnection box). These boards must be mounted behind the

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 3 5

Page 296: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

power and timing circuit packs. The synchronous paddle boards’internal (that is towards theWaveStar® ADM 16/1 system) outputsignal of 2048 kHz, is dual fed to both power and timing circuit packslots.

The following timing interface circuit pack is available for DS0 andDS2 markets (Japan and USA):

• TI-DS2DS0/1: Combined 64 + 8 kHz Sync Input + 6312 kHzSync Output packContains hardware to transform the external 64 + 8 kHzcomposite clock signal into the internal 2 MHz station clocksignal. This board also contains hardware to transform theinternal 2 MHz station clock signal into an external 6312 kHzsinusoidal output clock signal. One input and one output channelper pack.

E4/STM-0/STM-1 circuitpacks

The SPIA-1E4/4B or SIA-1/4B circuit packs supports a maximum of4 × STM-1 signals. By using the correct electrical or optical paddleboard and by correct provisioning of the unit, the card supportsSTM-1 electrical or STM-1 optical interfaces.

For 140 Mbit/s interfaces electrical paddle boards should be mountedbehind the SPIA-1E4/4B card.

The SA-0/12 is needed to support a maximum of 12 × STM-0signals. The STM-0 optical interfaces themselves are located onseparate optical Interface Circuit Packs (see above) and must bemounted directly behind the SA-0/12 card.

AU-3 / TU-3 conversion STM-1 tributary circuit packs, SPIA-1E4/4B or SIA-1/4B, supportremapping of VC-3 from AU-3 to TU-3 and vice versa (AU-3/TU-3conversion):

• AU-3 ↔ VC-3 ↔ TU-3 ↔ TUG-3 ↔ VC-4 ↔ AU-4

In this way, AU-3 structured signals will be translated into TU-3/AU-4structured signals that can be handled by the cross-connect of theWaveStar® ADM 16/1 system.

STM-4 optical interface cards support the same AU-3/TU-3conversion as described above for the STM-1 tributary board.Conversion is selectable per “STM-1”.

The SA-0/12, supports the following conversion mode:

• AU-3 ↔ VC-3 ↔ TU-3 ↔ TUG-3 ↔ VC-4 ↔ AU-4

Cross-connect circuit pack The CC-64/16 or CC-64/32(B) is connected with the Interface circuitpacks via the backplane bus. The higher order cross-connect size is

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 3 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 297: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

equivalent to 64 × 64 STM-1s (VC-4s); the lower order cross-connectsize is up to 32 × 32 STM-1s (VC-4s)(CC-64/32). The lower orderpart is also called time slot interchanger (TSI) because it caninterchange the location of TU-3s and TU-12s within the VC-4s.

The WaveStar® ADM 16/1 can provide optional equipmentredundancy (1+1) for the cross-connect circuit pack.

The fixed cross-connect unit replaces the working cross-connect unit,the protection cross-connect slot remains unassigned, as well as one ofthe tributary slots. No equipment protection of tributary cards issupported, nor of line cards or cross-connect units. Only the powerand timing unit can be protected. Network protection schemes likeMSP, MS-SPRING or SNCP are not supported either.

Power and timing circuitpacks

The WaveStar® ADM 16/1 can be equipped with two power andtiming circuit packs (PT): one as a working generator and the other asstandby.

Two versions of PT are available:

• PT-stnd: Standard version with approximately 4.6 ppm stability

• PT-str3: Version with approximately 0.37 ppm stability for thefirst 24hours of hold-over.

Timing modes available:

• Free-running

• Hold-over

• Locked with reference to:

– one of the external sync. inputs

– one of the STM-N inputs

– one of the 2 Mbit/s tributary inputs

The PT circuit packs also perform the necessary power filteringfunctions to meet the ETSI requirements. To maintain highavailability, these circuit packs may be duplicated (however, thesystem still works properly with only one PT inserted).

The actual DC/DC conversion is located on the circuit packs. Thepower feeds remain duplicated between the PT and the circuit packs.

System controller circuitpack

The System Controller (SC or the new SC2 in R4.0, Ruby-2) controlsand provisions all circuit packs, via a duplicated LAN bus. It alsocontrols the user panel (located at the front of the SC) and providesexternal operations interfaces.

Circuit packs Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 3 7

Page 298: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The SC has a certain amount of alterable non-volatile memory forstorage of programs, configuration and other semi-permanent data forthe DPS (on-board the SC) and all Function Controllers (FCs) in thesystem; this is the localWaveStar® ADM 16/1 database. After initialpower-up, the SC assumes default parameters for some configurableitems (e.g. CIT bit rate). Volatile memory is needed to store temporarydata structures. It is possible to download software from theWaveStar® ITM-SC to the SC to replace or add applications in thelocal database.

During download the old software is stored in memory as a back up.This means that after download, two complete software versions areavailable on the SC.

The following external interfaces are provided by the SC:

• Miscellaneous discretes (8 × Input, 4 × Output), via amanagement system

• Station alarm interfaces

• Q-LAN 10BASE-2 interface (for network and network elementlevel management)

• Q-LAN 10BASE-T interface (for network and network elementlevel management)

• 2 × F interface (rear and front access) (for local network elementmanagement and maintenance)

• 4 × G.703 and 2 × V.11 interfaces (Data and/or engineeringorder wire).

The Q-LAN address is derived from the dip-switch settings on theSC.

Circuit packs Description

....................................................................................................................................................................................................................................

4 - 3 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 299: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Timing and synchronization....................................................................................................................................................................................................................................

WaveStar ® ADM 16/1power and timing

architecture

The figure above depicts the architecture of a power and timingcircuit pack (PT) of theWaveStar® ADM 16/1 System, a maximumof two of which can be present in a system. A 1+1 equipmentprotection scheme can be set up between the two PTs.

Eight timing reference inputs (2 + 6) are shown. These inputs havethe following function:

• 2 × External timing inputs (external station clock): 75 or 120Ω(selected by different wiring of the cable connectors), 2 Mbit/s or2 MHz.

• 6 × internal timing reference inputs divided as follows:

– 4 × tributary (2 Mbit/s or STM-1 tribs)

– 2 × line

Note: an MSP pair counts as a SINGLE timing reference!

Figure 4-11 Power and timing architecture

ReferenceSelection

MainPLLSEL

ReferenceSelection

MainPLLSEL

Driver

2 MHz2 Mb/s

2 MHz2 Mb/s

from/to other PT

6

2

2

#1

#2

Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 3 9

Page 300: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Eight timing reference outputs (2 + 6) are shown. These outputs havethe following function:

• 2 × External timing outputs (external station clock): 75 or 120Ω(selected by different cabling), 2 Mbit/s or 2 MHz.

• 6 × internal timing reference outputs divided as follows:

– 4 × tributary (2 Mbit/s or STM-1 tribs)

– 2 × line.

Note: by software selection the user may choose to forward theexternal timing output signal to the first, the second or both timingoutput signal connectors.

Two PLLs (phase lock loops), or station equipment clocks (SECs), areshown: one is the main PLL; the central clock driving six timingoutput ports, and the other the External PLL, driving two timingoutput ports.

The signal driving the individual PLLs can be selected as follows:

• for the MAIN PLL: out of either the sync. signal provided by theother (protect) PT-circuit pack or out of the reference signalselected by the reference selector shown to its left.

• for the EXT. PLL: out of either the sync. signal provided by theMAIN PLL or out of the reference signal selected by thereference selector shown to its left.

Hence it is possible to select individual timing references for theoutgoing station clock signals and for the internal reference clocksignals. Reference selections are software selectable by the user.

Timing modes As shown inFigure 4-12, “Timing modes (FR selected)” (4-41), thesystem can be provisioned for the following synchronizationconditions / modes:

• add/drop or Terminal application:

– Free-running from an internal oscillator (FR)

– Internal Timing from an incoming line or tributary signal(Lower Order)

Timing and synchronization Description

....................................................................................................................................................................................................................................

4 - 4 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 301: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

– External Timing, timed from an external 2 MHz or 2 Mbit/sclock signal (Lower Order)

– Hold-over mode (HO).

Timing mode selection The user can select the system to function in any one of the threesync. modes specified above. This selection can be done by software(user input) or be fully automatically. If set to automatic, the systemwill automatically switch to hold-over mode if the input timingreference signal fails.

Free-running operation (FR)

The WaveStar® ADM 16/1 is designed to operate without anyexternal synchronization reference in the free-running mode. In thefree-running mode (switch set to FR in figure 4-10), the PT derivestiming from an internal station equipment clock (SEC) oscillator. Theinternal SEC oscillator’s long-term accuracy is higher than 4.6 ppm.The PT generates and distributes the timing signals to the interfacecircuit packs.

Locked mode (LO)

• Locked-to-line or tributary operation (with hold-over).In the locked-to-line or tributary timing mode (switch set to LOin Figure 4-12, “Timing modes (FR selected)” (4-41)), the systemderives timing from the incoming line or tributary signals. Inturn, the PT generates timing signals and distributes them to thetransmission circuit packs. The signal references are continuouslymonitored for error-free operation. If the working line or tributaryreference in a protected system becomes corrupted, the PT circuitselects the protection line / tributary reference without causingservice degradation. If both references fail, the PLL circuit holdsthe on-board oscillator frequency at the last good reference

Figure 4-12 Timing modes (FR selected)

Hold-overmemory

PLL

LO

HO

FR

Timing and synchronization Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 4 1

Page 302: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

sample while the references are repaired, (hold-over mode:switch set to HO in figure 4-10 automatically!). This mechanismis provided so that operation with or without an external clockcan be easily accommodated. In both timing modes, the PT canalso provide two synchronization outputs to other central officeequipment.

• Locked to External timing reference Operation (with hold-over)In the external timing mode (switch set to LO inFigure 4-12,“Timing modes (FR selected)” (4-41)), each PT circuit packaccepts a 2 MHz or 2 Mbit/s synchronization reference signalfrom a 4.6 ppm or better station clock. These referencessynchronize the local terminal. Within the PT circuit pack, ahighly stable PLL circuit removes any transient impairments fromthe 2 MHz or 2 Mbit/s reference for improved jitterperformance. If the external reference fails, the PLL circuit onthe PT circuit pack holds the on-board oscillator frequency at thelast reference sample while the external clock signal is repaired(hold-over mode: switch set to HO inFigure 4-12, “Timingmodes (FR selected)” (4-41)automatically!).

Hold-over mode (HO)

As described above, the system provides a so-called hold-over modeto ensure that the timing of the system is as accurate as possible whenall timing references fail. It therefore memorizes the most recentlyused timing frequency in a hold-over memory on-board the PT.

Two versions of PT circuit packs are available with the onlydifference of hold-over accuracy:

• PT-stnd: the standard PT circuit pack providing a clock to thesystem with 4.6 ppm hold-over accuracy.

• PT-str-3: the PT circuit pack providing a clock signal to thesystem with 0.37 ppm hold-over accuracy during at least the first24 hours of hold-over.

Back-up timing To keep the software on all circuit packs alive when there is nosynchronization signal from one or both PTs, the System Controller(SC) distributes a back-up timing signal. This timing allows for theexecution of circuit pack tests and equipment loop-backs. The SCtiming signal is distributed to all slots of the system, except for thePT slots. The accuracy of the back-up timing signal is approximately50 ppm. When the back-up clock is selected, the circuit packs switchall transmission ports to SQUELCH mode.

Timing and synchronization Description

....................................................................................................................................................................................................................................

4 - 4 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 303: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Clock / synchronousdistribution on circuit

packs

The figure above gives an overview of timing at circuit-pack level.

A selection is made between one of the following three timingsources:

1. Reference signal selected by the working PT circuit pack

2. Reference signal selected by the protecting PT circuit pack

3. Back-up clock signal derived from the SC.

All PT signals are checked for availability and if a signal fails thenmessage “Timing Fail” (including appropriate source that’s missing) issent to the on-board function controller (FC). Then the FCimmediately initiates the command to switch to the system’s back-uptiming and all transmission ports are switched off (squelch mode).Switching between the input references is non-revertive.

A PLL on the circuit pack itself locks to the selected timing sourceand supplies the circuit pack with all necessary frequencies.

Figure 4-13 Timing at circuit pack level of the WaveStar ® ADM16/1

fromPTworking

fromPTprotecting

from SCback-up clock

SelectMux

Freq.Divider

PulseDetector

PLL

: N

N MHz

N kHz

155 MHz

155 MHz

Timing and synchronization Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 4 3

Page 304: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Redundancy and protection....................................................................................................................................................................................................................................

Equipment protection(redundancy)

To enhance the over-all reliability of the system, equipmentredundancy can be applied. The FIT rate numbers are specified foreach unit in section 10 of this manual.

The core of the system functionality, the cross-connect (CC) circuitpack, can be duplicated if so required. It avoids a single point offailure for traffic between any two port units. A switch-over betweencross-connect units, causes a hit in the traffic of at most 50 ms.

In addition, the power and timing (PT) circuit pack can be optionallyduplicated. This will provide the necessary power and timingredundancy. If the timing of a single PT circuit pack fails, the back-upPT unit takes over. A switchover of power or timing functionsbetween both PT units, does not affect the traffic through the system.

Although the PT unit can be used in unprotected mode, it is stronglyadvised to use the PT circuit pack in redundant mode.

To complete equipment redundancy, all electrical tributary interfacecircuit packs can be provided with equipment protection as well:

• 1.5, 2 Mbit/s Interface circuit packs can be 1:n (n = max. 8)equipment protected

• 140 Mbit/s and STM-1e circuit packs can be 1:n (n = max. 4)protected

• 34/45 Mbit/s and 45 Mbit/s circuit packs will be 1+1 equipmentprotected.

In the event of failure in any circuit of an interface circuit pack, alltraffic carried by this pack is switched to the protecting circuit pack.

Network protection Protection against failures at the network level, e.g. cable breaks orfailures in other equipment in the network, requires network levelprotection schemes. TheWaveStar® ADM 16/1 system supports thefollowing network level protection schemes:

1. Multiplex Section Protection (MSP)

2. Multiplex Section Shared Protection Ring (MS-SPRing)

3. Sub-network connection protection (SNCP)

Description

....................................................................................................................................................................................................................................

4 - 4 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 305: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

In addition a number of features are supported to optimize thenetwork protection for many applications:

1. Access of protection bandwidth in MS-SPRing

2. Tailoring of the MS-SPRing bandwidth (selective MS-SPRing)

3. Dual Node Interworking with drop & continue

At the network level these features allow to make the most efficientuse of the available bandwidth, while still providing adequateprotection for a very large number of applications.

Multiplex Section SharedProtection Ring

(MS-SPRing)

MS-SPRing is a shared protection mechanism, which means that theprotection bandwidth is shared by multiple connections. MS-SPRingcan operate in a ring network only and it operates at the VC-4 level.The protection is applicable from the node where the VC-4 enters thering till the node where the VC-4 leaves the ring. TheWaveStar®

ADM 16/1 supports 2 fiber MS-SPRing on its STM-16 aggregateinterfaces, so it supports 2 fiber MS-SPRing protected STM-16 rings.The maximum number of nodes in the MS-SPRing can be 16, theminimum can be 2. The MS-SPRing protocol uses an APS channel forsignalling, which is transmitted in K1/K2 bytes in the MultiplexSection overhead, according to ITU-T Recommendation G.841. Theprotocol provides protection within 50 ms.

In MS-SPRing protected rings it is useful to define (bi-directional)channels. There are 16 such channels in an STM-16 MS-SPRing. Achannel can be thought of as the capacity of a single, bi-directional,STM-1 going fully around the ring in a certain fixed position withinthe STM-16 connections that make up the ring. Each channel cantransport one VC-4 payload in both directions at a time If a VC-4 isadded/dropped from the channel in a node, it can pick up a new VC-4there and carry it further around the ring. These channels can benumbered #1 through #16.

In the MS-SPRing the channels #1 through #8 are available forprotected VC-4 traffic. They are protected by the capacity provided bychannels #9 through #16, on a pair-by-pair basis, so channel #9protects channel #1, #10 protects #2, etc. up to channel #16 protecting#8. In the Sapphire and later releases, it is allowed to decide perchannel pair (1, 9), (2, 10) etc. whether or not it is part of theMS-SPRing (selective MS SPRing or NUT/NPPA). An application forthis exclusion of a certain pair from MS-SPRing could be to avoiddouble protection on an connection that is already VC-4 SNCprotected and thus save bandwidth.

To summarize, within an MS-SPRing the bandwidth can be split inthree parts: Worker capacity, protection capacity and un-protected

Redundancy and protection Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 4 5

Page 306: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

capacity. Each channel pair can be anunprotected pair or aworker/protection pair. In the latter case the lower channel numberrepresents the worker capacity and the higher channel number theprotection capacity.

The protection capacity can be accessed and used for transport of lowpriority traffic (“extra traffic”), to utilize the bandwidth even better.Under failure conditions this traffic will be lost (“pre-empted”).

At the network level, the efficiency of the MS-SPRing protectionmechanism is its most obvious advantage. The degree of bandwidthsaving over e.g. a VC-4 SNCP scheme depends on the traffic pattern.The most dramatic improvement is in the case where the traffic ismostly between adjacent ring nodes. On the other hand, if all traffic isdestined for a specific hub-node, there is no bandwidth advantagecompared to VC-4 SNCP. For uniform traffic patterns the result isbetween these extremes.

1+1 Multiplex Section Protection (MSP)

1+1 Multiplex Section Protection is a relatively simple scheme toprotect an STM-N link between two adjacent SDH network elements(excluding regenerators) by providing dedicated protection capacity.The MSP protocol exists in different versions: G.841/Clause 7 (mostlyused internationally), G.841/Annex B (Japan) and SONET-style,according to ANSI T1.105 and Telcordia GR-253-CORE (US,Canada). To maximize the interworking and application possibilities,the WaveStar® ADM 16/1 supports all these versions on variousSTM-N interfaces.

The following parameters can be provisioned and commands can beissued for each 1+1 MSP protection process:

• Operation: Revertive or non-revertive. Revertive operation meansthat after repair of a failure the traffic is switched back to the“worker” capacity. Non-revertive operation means that the trafficwill not be switched back to the “worker” capacity.

• Wait-to-Restore time. The time that should elapse before a switchback to “worker” is initiated after repair of a failure. The timercan be provisioned between 0 and 60 minutes in 1 minuteincrements. The default is 5 minutes. Only available withrevertive operation.

• Control: Bi-directional or Uni-directional control. Uni-directionalcontrol means that each receive end decides separately whichtraffic stream is active. Bi-directional control means that bothends switch in conjunction. In uni-directional schemes the trafficin one direction can be selected from the “worker” and in theother direction from the “protection” capacity.

Redundancy and protection Description

....................................................................................................................................................................................................................................

4 - 4 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 307: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• Force switch command. By issuing a force switch the user forcesthe traffic to either “worker” (force to worker) or to “protection”(force to protection).

• Manual switch command. By issuing a manual switch the userrequests the traffic to either “worker” (manual to worker) or to“protection” (manual to protection) side. The request is onlyhonored if the designated capacity is not affected by “SignalFail” or “Signal Degrade” defects.

• Lockout of Protection command. By issuing a Lockout ofProtection command all access to the protection side is denied.

• Clear command. Clears all pending requests.

The following interfaces support 1+1 MSP

• STM-0 tributary interfaces support 1+1 MSP according to theG.841/Annex B protocol. This protocol version supports onlynon-revertive operation with bi-directional control.

• STM-1 and STM-4 optical tributary interfaces support 1+1 MSPall three types of MSP protocol:

– According to G.841/Annex B supporting only non-revertiveoperation with bi-directional control.

– According to G.841/Clause 7 supporting both revertive andnon-revertive operation and both uni-directional andbi-directional control.

– According to ANSI T1.105 and Telcordia GR-253-COREsupporting only non-revertive operation with uni-directionalcontrol.

• STM-16 aggregate interfaces support 1+1 MSP according toG.841/Clause 7, with both revertive and non-revertive operationand both uni-directional and bi-directional control.

Sub-network Connection Protection (SNCP)

The WaveStar® ADM 16/1 supports Sub-Network Connection (SNC)protection, also known as path protection, according to ITU-TRecommendation G.841/Clause 8. It is available at the VC-12, VC-3and VC-4 level. SNC protection is a simple 1+1 protection schemewhich only supports uni-directional operation. The big advantage overthe MS-SPRing and MSP schemes is that the protection can beapplied over the whole VC-n path from source to sink terminationpoint, but also on one or multiple parts of the end-to-end path. In thisway SNC protection is very flexible.

The WaveStar® ADM 16/1 supports VC-4 SNC protection betweenany pair of VC-4 in the Higher-Order matrix, located on thecross-connect unit. Protection can be set up between to VC-4s from

Redundancy and protection Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 4 7

Page 308: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

tributary interfaces or between two VC-4s from aggregate interfacesor between a VC-4 from a tributary interface and a VC-4 from anaggregate interface. TheWaveStar® ADM 16/1 supports VC-3 andVC-12 SNC protection between any pair of VC-3s or VC-12s,irrespective of their source/destination in the Lower-Order matrix, alsolocated on the cross-connect unit. The protection switch time for SNCprotection is 50 ms.

The SNC protection scheme supported in theWaveStar® ADM 16/1 isof the non-intrusively monitored type or SNC/N. This variety not onlyprotects against defects in the server layer (as Inherently MonitoredSNC or SNC/I does) but in addition also against defects in the VC-nlayer itself. So SNC/N protected VC-4s are protected against AIS orLOP at the AU-4 level (server layer defects) and againstmisconnections (trace identifier mismatch or VC-4 dTIM) ordisconnections (unequipped signal or VC-4 dUNEQ) or signaldegradations (VC-4 dDEG) in the VC-4 itself. Likewise, SNC/Nprotected VC-3s and VC-12s are protected against TU3/12-AIS andTU3/12-LOP (server layer defects) and VC-3/12 dTIM, dUNEQ anddDEG.

Optionally for each SNC process, the trace identifier mismatchdetection can be disabled. This feature allows interworking withequipment that transmits an unknown trace identifier or which uses adifferent format for it. TheWaveStar® ADM 16/1 supports the 15byte API plus 1 byte CRC-7 format for its Trail Trace Identifiers(TTIs).

Within the SNC protection mechanism it is possible to protect thecomplete end-to-end VC-n connection, but also to protect one or morepart of it. When the end-to-end connection is split in multiple parts(thus truly creating sub-network connections), each part can beindividually protected by an SNCP scheme. TheWaveStar® ADM16/1 supports the cascading of two such SNCP sections within onenetwork element. This can be applied e.g. in cases where theWaveStar® ADM 16/1 interconnects between a ring over its tributariesand another ring over its aggregates. The protection mechanism inboth rings can be two cascaded SNCP schemes, thus separating theprotection in both rings. This helps in fault localization, becausefailures in a ring lead to protection switches in that same ring.

The WaveStar® ADM 16/1 supports “hold-off” timers for SNCprotection. For each SNC/N process the user can provision a timerbetween 0 and 10 seconds in 0.1 second increments, which defineshow much time should elapse before a SNC switch is initiated. Thismechanism can be applied if several protection schemes are nested.E.g. a VC-12 SNCP scheme is used on top of an MS-SPRing.Normally, the MS-SPRing reacts within 50 ms. By provisioning a 100

Redundancy and protection Description

....................................................................................................................................................................................................................................

4 - 4 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 309: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

ms hold-off time on the VC-12 SNC protection, the MS-SPRing isgiven the opportunity to react to a failure first. This avoids multipleswitches.

Dual Node Interworking with drop & continue

The MS-SPRing protection mechanism offers very efficient protectionbut since the protection span is limited to a single ring network, thereis need for a mechanism to couple ring networks in a way that avoidssingle points of failure, to allow longer end-to-end protected paths.This mechanism is called Dual Node Interworking with Drop &Continue.

The advantages of using this mechanism are:

• Protected interconnection between MS-SPRing rings possible,thus allowing longer end-to-end protected spans, without singlepoint of failure on each ring interconnect.

• Possibility to interconnect the MS-SPRing scheme to the SNCPscheme, without introducing a single point of failure. This allowsthe user the flexibility to use the protection scheme of choice ineach network part, while avoiding double protection.

• Independence of the protection mechanisms in different networkparts, which results in protection switches relatively close to thefailure, so in principle easier to fault-locate.

• A higher availability, compared to end-to-end SNCP protectionschemes. Especially on very long connections, more protectionagainst multiple failure is provided (as long as there is at mostone failure per protected sub-network).

Dual Node Interworking with Drop and Continue is a mechanismdescribed in ITU-T Recommendation G.842, and it is realized byconnecting the two networks in question in two different locations insuch a way that if one location fails completely, the traffic can stillreach the other network via the second interconnection.

Redundancy and protection Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 4 9

Page 310: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The WaveStar® ADM 16/1 supports two different DNI configurations:

1. Between two MS-SPRing rings. The ring interconnection consistsin this case of four network elements. Two network elements ineach ring which are pair wise connected (seeFigure 4-14, “DNIbetween two MS-SPRing rings” (4-51))

2. Between an STM-16 MS-SPRing ring and a LO-SNC protectedsubnetwork. In this case the interconnect can be built with justtwo nodes, which are connected to the MS-SPRing via theaggregate interfaces and to the SNC protected network via thetributary interfaces (seeFigure 4-14, “DNI between twoMS-SPRing rings” (4-51)to Figure 4-17, “DNI with drop &continue between MS-SPRing and LO-SNCP, two nodeconfiguration. Detailed view of interconnecting nodes” (4-52)).

The MS-SPRing part of the DNI scheme allows for each individualVC-4, the assignment of primary and secondary “add” and “drop”nodes. Dropped traffic is broadcasted to both primary and secondaryoutputs (“drop & continue”), while a selector in the primary nodeselects whether the added traffic from the primary of from thesecondary node is forwarded onto the MS-SPRing. This selector isusually called a “service selector” is non-revertive and operatesaccording to the VC-4 SNC/N criteria.

Redundancy and protection Description

....................................................................................................................................................................................................................................

4 - 5 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 311: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The following features are supported:

• The traffic between the primary and secondary node in theMS-SPRing can be transported over “worker” capacity or over“protection” capacity, called “continue over worker” and“continue over protection” respectively. The latter option savesbandwidth but leads to slightly lower availability and precludes“extra traffic” to make use of that same capacity.

• Both VC-4 and VC-4-4c payloads can be handled.

• Primary and Secondary nodes can be selected for each VC-4transported over the MS-SPRing, both at the entry and at the exitside. These nodes need not be adjacent.

Figure 4-14 DNI between two MS-SPRing rings

Figure 4-15 DNI with drop & continue between MS-SPRing andLO-SNCP, two node configuration.Traffic fromMS-SPRing to LO-SNCP

Redundancy and protection Description

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

4 - 5 1

Page 312: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Figure 4-16 DNI with drop & continue between MS-SPRing andLO-SNCP, two node configuration.Traffic fromLO-SNCP to MS-SPRing

Figure 4-17 DNI with drop & continue between MS-SPRing andLO-SNCP, two node configuration. Detailed view ofinterconnecting nodes

Redundancy and protection Description

....................................................................................................................................................................................................................................

4 - 5 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 313: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

5 Operations, administration,maintenance, and provisioning

Overview....................................................................................................................................................................................................................................

Purpose This chapter defines the “maintenance philosophy” outlining thevarious features available for monitoring and maintaining theWaveStar® ADM 16/1.

ContentsOperations 5-2

Administration 5-9

Maintenance 5-14

Provisioning 5-17

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 1

Page 314: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Operations....................................................................................................................................................................................................................................

Introduction Element management and network management aspects ofWaveStar®

ADM 16/1 are based on the SDH concepts as laid down in ITU-Trecommendations, for instance G.784.

Local operations facilities are based on long-term experience andseveral commonly applied operations and alarms procedures.

The WaveStar® ADM 16/1 is additionally provided with advanceddiagnostic features which can be used for equipment performancechecks and detailed fault location.

The WaveStar® ADM 16/1 maintenance procedures are built on twolevels of system information and control. The first maintenance tier isprovided by the:

• User panel

• Circuit pack faceplate LEDs

• Operations interfaces.

These features enable maintenance tasks (that is, circuit packreplacement) to be performed without an ITM-CIT (Craft InterfaceTerminal) or external test equipment. The second maintenance tieruses the ITM-CIT to retrieve detailed reports about alarms and status,and system configuration for local terminals.

User panel The user panel of theWaveStar® ADM 16/1 is integrated in thefaceplate of the System Controller (SC) circuit pack, as shown inFigure 5-1, “WaveStar® ADM 16/1 user panel: SC faceplate” (5-3).Lightguides are used to make the alarm and status indicators on theSC visible with the front door of the subrack closed. The door must

Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

5 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 315: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

be opened to operate the buttons or make connection to the ITM-CITconnector. The user panel provides system-level information.

User panel LEDs andconnector

The user panel LEDs show the following system information:

• FAILA red FAIL LED is lit when at least one prompt or deferredmaintenance alarm exists.

• POWERA green POWER LED indicates that voltage is present on at leastone of the –48V secondary power-distribution feeds inside thesystem.

• The active alarm level is shown by LEDs for

– PROMPT alarmsA red PROMPT LED indicates a transmission affectingmalfunction.

– DEFERRED alarmsA red DEFERRED LED indicates a no transmissionaffecting malfunction

– INFO alarms

Figure 5-1 WaveStar ® ADM 16/1 user panel: SC faceplate

Operations Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 3

Page 316: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

A yellow INFO LED indicates a failure that is not locatedwithin the terminal.If only the INFO indicator is lit, no immediate maintenanceaction is required.

The alarm severities (CRITICAL, PROMPT, DEFERRED andINFO) of the fault messages, are user provisionable.

• ABNORMALA yellow ABNORMAL LED indicates a the existence ofabnormal conditions initiated in the Network Element, forexample: a protection lock out, forced switch, manual switch,protection line in use, alarms disconnected, installation self-testfailed.

• SUPPRESSA yellow SUPPRESS LED indicates that the SUPPRESS key hasbeen activated while an active office alarm condition exists.

• DISCONNECTA yellow DISC LED indicates that the DISC(onnect) key hasbeen activated, which means that office alarms are disconnected.

• USE CITA yellow USE ITM-CIT LED indicates when the ITM-CIT mustbe used to obtain more detailed information about system status.This LED is part of the ITM-CIT connector.

User panel controls and connector

Two manual controls (switches) and one connector are mounted onthe SC faceplate. The following functions can be distinguished:

• SUPPRESS SWITCHAn alarm that is shown on the user panel can be suppressed bypressing the SUPPRESS SWITCH push button, consequently theSUPPRESS LED lights up. If another alarm of the same classoccurs, it can now be noticed.

• DISC SWITCHThe DISC SWITCH push button inhibits the activation of officealarms when pressed, consequently the DISC LED lights up.

• ITM-CIT connectorThe ITM-CIT connector is a RJ-45 connector. It is also called theF-interface, and interfaces with the local element managementsystem.

Circuit pack faceplate LEDs

To supplement the user panel’s system-level view, each circuit packhas a red FAIL LED on its faceplate (at the top of the faceplate).During normal fault-free operation, the LED is not lit. A continuouslylit FAIL LED means theWaveStar® ADM 16/1 has isolated a failure

Operations Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

5 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 317: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

to this circuit pack or when the circuit pack has been inserted in a slotwhich cannot support or is not configured to support this type ofpack.

A 1 Hz flashing FAIL LED shows the following:

• A flashing FAIL LED on a interface circuit pack indicates that anincoming signal to that circuit pack has failed

• A flashing FAIL RED LED on a Power and Timing (PT) circuitpack indicates an external timing reference failure.

• A flashing FAIL LED on the SC indicates loss of communicationwith the Navis® Optical Management System.

It is user provisionable if FAIL LEDs flash or are continuously off inthe case of an alarm as indicated above.

The PT circuit pack has a second, green, LED. This LED lights upwhen the external supply voltage is present.

Note: paddle boards have no indicators.

Operations interfaces The WaveStar® ADM 16/1 system supports office (station) alarms,user-settable miscellaneous discretes and a message-based operationssystem interface.

Office (station) alarm interface

The office-alarms interface is a set of discrete relays (floatingcontacts) that control office audible and visible alarms. The relays arelocated on the system controller (SC) circuit pack. The relays areactivated when a PROMPT or DEFERRED Maintenance Alarmsituation exists in the system to activate: End-Of-Suite, Bay-top,Station alarms and Miscellaneous maintenance information. They aremade available via a connector on the interconnection box (ICB); bothdisconnectable and non-disconnectable outputs are available. Themiscellaneous conditions consist of suppressed alarms present,disconnect function activated and main controller removed.

Miscellaneous discretes

The miscellaneous discrete interface allows an operations system tocontrol and monitor equipment co-located with theWaveStar® ADM16/1 system through a series of input (MDIs) and output (MDOs)contact closures. Eight miscellaneous discrete inputs can monitor suchconditions as open doors, high temperature or high humidity, and fourmiscellaneous discrete control outputs can control equipment such asfans and generators. The statuses of the miscellaneous discreteenvironmental inputs are reported to theWaveStar® ITM-SC networkelement management system. It is possible to activate thesemiscellaneous discrete control outputs from theWaveStar® ITM-SCnetwork element management system when the system reports an

Operations Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 5

Page 318: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

alarm condition. Miscellaneous discretes are provided to the userthrough a connector at the interconnection box.

MDI/MDO management

It is possible for the user to control all MDOs of allWaveStar® ADM16/1s under a singleWaveStar® ITM-SC by means of a scriptingfacility. These scripts can be edited, activated and de-activated duringruntime. The scripts are sufficiently flexible to allow activation orde-activation of certain MDOs based on combinations of certainalarms or MDI statuses on those network elements. Strings can beassigned to MDOs and their status is visible to the user.

Network management interfaces

• Q-LAN interfacesThe Q-LAN interfaces enable network-oriented communicationbetween theWaveStar® ADM 16/1 and theWaveStar® ITM-SCandNavis® Optical NMS. This is the standardized interface toNavis® Optical Management System. Two physical interfaces forQ-LAN are available and available on the interconnection box:

– 10 Base-T: Twisted Pair Ethernet, (10 Mbit/s)

– 10 Base-2: Thin Ethernet or Cheapernet, (10 Mbit/s).It is not possible to use both interfaces simultaneously.

• CIT-F (Craft Interface Terminal) interfacesThree logical connection points for a CIT are available: 3× CIT-F. Three connection points for local use are available: oneon the User Panel (faceplate SC), which can be used by a craftsperson working in front of the equipment. The second CIT-Finterface is available on the system’s interconnection box and canbe used by a crafts person working with the EMC boundaryclosed. The last one is present on the rear side of the system.Electrical characteristics of both CIT ports comply with V.10.

Additional operationalfeatures

Loop-backs

Within the WaveStar® ADM 16/1 loop-backs are possible at VC-nlevel or AU-4 level. The VC-n level can be used for far-end /near-end loop-backs and AU-4 for a loop-back within the higher ordercross-connect. The 2 Mbit/s, STM-0o, STM-1o and STM-4 have bothfar-end and near-end loop-back possibilities. The STM-1e will beloop-backed via the higher order cross-connect.

Far-end refers to looping back the signal coming from thecross-connect back to the cross-connect via a tributary. Near-endrefers to directly looping back incoming signals as outgoing signals.

Operations Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

5 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 319: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Loop-backs are also allowed when the optical STM-N interfaces arebeing provisioned as 1+1 MSP protected.

Note: Due to device problems on the units as listed below (and alsonewer versions) the far-end loopback on STM-1 and STM-4o is notworking anymore when operated in SDH (AU-4) mode. In this casetraffic needs to be loop-backed via the cross-connect. When operatedin AU-3 conversion mode these far-end loopbacks are working fine. Asoftware change is available in order to work around the problems viaa VC loopback on the CC unit.

Unit type Itemcode Comcode Remarks

SI-L4.2/1+6dB B LJB405B 108681677 Not orderable anymore

SI-L4.2/1 LJB405C 108862509

SI-S4.1/1B LJB416B 108442005

SPIA-1E4/4B LJB431B 108681651

LJB431T 108988312

SIA-1/4B LJB439B 108884610

LJB439T 108988338

User channels

The STM-1, STM-4 and STM-16 section overhead and theVC-3/VC-4 path overhead contain several bytes, for instance E and Fbytes, which can be used to provide 64 kbit/s operations channels.

The WaveStar® ADM 16/1 provides for a maximum of six transparent64 kbit/s channels selected from the following overhead bytes:

• E1 and E2 bytes: The use of which is mainly referred to as:engineering order wire channels

• F1 and F2 bytes: The use of which is mainly referred to as: userchannels

• MS-NU and RS-NU bytes: The use of which is mainly referredto as: National Use bytes.

The selected six overhead byte channels are fed via the SystemController to the integrated interconnection box and are available via:4 × G.703 co-directional interfaces and 2 × V.11 contra-directionalinterfaces.

SeeChapter 9, “Technical data”for more details on the overheadbytes.

Operations Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 7

Page 320: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Remote login/single ended operations/NSAP addresses(programmable)

The interfaces for the CIT-F (F-interface) provide the facility to logonto the localWaveStar® ADM 16/1. TheWaveStar® ITM-SC canperform these control and provisioning tasks remotely.

The NSAP address is programmable to enable compatibility with theNSAP addresses of existing products like ISM, SLM, PHASE, etc.This will allow DCC interworking with other kinds of equipment.

Data communications channel

This network operations capability uses the SDH section (MSOH andRSOH) data communication channel (DCC) bytes. Managementinterface dialogs and operations interface messages travel in theseDCC bytes on each STM-1 (optical and electrical) interface. Otheroptical signals like STM-16, STM-4 and STM-0 are also supportingthe DCC channel.

Severity setting for alarms on each termination point instance

Since different clients pay for different Quality of Service (QoS), thepriority and time to repair can differ for different paths. By setting ahigher severity for the alarms on paths that require a high QoS, thanfor the paths that require a low QoS, the promised QoS can be metbetter. In the subsection Performance Monitoring the concept ofQuality of Service is explained in more detail.

Support of a multiplex section trace identifier (J0 byte)

The user can provide a multiplex section trace identifier on all STM-N(N = 1, 4, 16) outputs of theWaveStar® ADM 16/1 via theWaveStar® ITM-SC or ITM-CIT. In the receive direction an expectedvalue for this trace identifier can be provided. In case of a mismatch aTIM (trace identifier mismatch) alarm is generated an consequentactions are invoked. The TIM detection mechanism can be disabledper interface.

Operations Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

5 - 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 321: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Administration....................................................................................................................................................................................................................................

Version recognition The system provides automatic version recognition of all hardwareand software installed on the system. The system can report the type,version and serial number of the circuit pack installed in each slot.Each circuit pack identification code is stored on the circuit pack itselfand is accessible by the system controller.

User login security The WaveStar® ITM-SC network element management systemprovides security protection against unauthorized access to thenetwork element functions (for example provisioning). This featurecontrols access to the system on an individual user basis including:

• Login ID and password assignmentThis requires the user to enter a valid Login ID and password toaccess the system.

• User authorization levelsProvides three levels of access on a per session basis:

– AdministratorThe Administrator is authorized to performWaveStar®

ITM-SC system control activities. This includes starting andstopping management of the transmission network. Only thisuser can administer other users of theWaveStar® ITM-SCapplication. In addition, backups can be created or restoredby this user.

– OperatorAuthorized for all retrieval and operate commands that arenot service affected and does not imply system configurationchanges.

– SupervisorAuthorized for all retrieval, provisioning and operatecommands, as well service and not service affectedhandling, with the exception of provisioning security dataand software downloads.

Software upgrades Upgrading and reconfiguring theWaveStar® ADM 16/1 to supportnew services or to incorporate feature enhancements can easily beimplemented by downloading a new software generic via theappropriate (F) Operations interface.

Normally, however, depending on the actual situation, downloadingand replacing software generics do not cause service interruption.

Performance monitoring Performance monitoring can be used for, broadly speaking, twoapplications. The first application is for maintenance applications, the

Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 9

Page 322: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

second application is for “Quality of Service (QoS)” monitoring. TheWaveStar® ADM 16/1 performance monitoring features are basedupon ITU-T Recommendations G.784, G.826, G.827, G.829,M.2101.1, M.2110 and M.2120. All definitions of maintenanceparameters are according to G.784 and G.826.

Maintenance applications

The maintenance applications are based on ITU-T RecommendationsM.2101.1, M.2110 and M.2120 and are used for “bringing into rervice(BIS)” and other initial testing procedures and localization/monitoringof under-performing parts of an end-to-end path. To support theseapplications theWaveStar® ADM 16/1 provides for each performancemonitoring process, the current 15 minute interval and current 24 hourinterval counts of the BBE (background block errors), ES (erroredseconds), SES (severely errored seconds) and UAS (unavailableseconds). In addition the recent history of these parameters remainsstored in the network element: the 16 most recent complete 15 minutecounts and the 1 most recent complete 24 hour count.

For all current interval counters, thresholds can be set that control theforwarding of threshold report (TR) and reset threshold report (RTR)information to the management system. A TR is generated at themoment that the actual count in a current register crosses the “set”threshold level for the first time since the last RTR. An RTR isgenerated at the end of the first interval in which the actual countremains below the “clear” threshold. So the TRs and RTRs aregenerated alternatingly. In the period between a TR and an RTR themonitored part of the path is considered degraded, while the periodbetween a RTR and a TR it is considered normal. “set” and “clear”thresholds can be assigned by the user via the ITM-CIT or theWaveStar® ITM-SC.

In addition to the parameters above, also the 6 most recent UAPs(unavailable periods) are logged in the system. Each UAP isrepresented by two timestamps. The first indicates the time of entering“unavailable time” and the second indicates the subsequent entering of“available time”.

For maintenance applications theWaveStar® ADM 16/1 supports thecounting, threshold monitoring and logging of all the parametersmentioned above for the incoming traffic direction (or “uni-directionalnear-end” performance monitoring). Possible monitoring points areVC-12, VC-3 and VC-4 trail terminations points (TTPs) as well as onMS-0, MS-1, MS-4, MS-16 and RS-16 termination points as well asVC-4 and VC-4-4c transit points or connection termination points(CTPs). In R4.1 also VC-12 and VC-3 CTPs is supported. Note thatthe uni-directional near-end performance monitoring provides the

Administration Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

5 - 1 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 323: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

performance of the incoming signal between the signal trail sourceand the monitoring point.

The BBE, ES, SES, UAS and UAT parameters are derived from theerrors in the incoming signal, based on the B1, B2, B3 or V5 (bit 1,2) parity information which is part of the RSOH, MSOH or VC-POH.Periods of unavailable time are, additionally, based on local defacts ordefects in the incoming signal. For the duration of a period ofunavailable time the BBE, ES and SES counters are inhibited.

Quality of Service application

The Quality of Service (QoS) applications are based on ITU-TRecommendations G.826 and G.827. In contrast with the maintenanceapplication, the QoS application requires a performance assessment ofthe bi-directional path over longer periods.

To support the QoS application in the network element, theWaveStar® ADM 16/1 provides the logging of the current and mostrecent 24 hour periods of the UAP, UAP-count (number ofunavailable periods) and UAS for the bi-directional connection,whereby the bi-directional connection is considered unavailable assoon as one of the direction is unavailable. In addition, for eachmonitoring point the BBE, ES and SES counts are reported for bothdirections individually. So there are nine parameters altogether perbi-directional monitoring point. Note that all six BBE, ES and SEScounters are inhibited as soon as the bi-directional connection isunavailable. For this reason the bi-directional counts may differ fromthe uni-directional counts, even if they are concerning the same pathand the same monitoring interval.

Bi-directional performance monitoring comes in two flavours: In“end-points” or TTPs or in “mid-points” or CTPs. The followingmonitoring points in theWaveStar® ADM 16/1 support bi-directionalPM: VC-12, VC-3 and VC-4 TTPs, VC-4 and VC-4-4c CTPs and inR4.1 also VC-12 and VC-3 CTPs.

Bi-directional performance reports in end-points are based on thenear-end and far-end (REI, RDI) information received on theincoming signal. Bi-directional performance reports in midpoints arebased on the far-end information contained in the incoming signal inboth directions of transmission.

Number of Performance Monitors

The WaveStar® ADM 16/1 can support 250 monitoring pointssimultaneously. The new SC2 system controller can even support 600monitoring points simultaneously with Ruby Release and up to 1200monitoring points with the Pearl Release. These can be randomlyselected from all the possible TTPs and CTPs indicated above,

Administration Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 1 1

Page 324: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

counting the “uni-directional near-end” and “bi-directional”applications as different. Once a performance monitoring point isactivated the full set of performance parameters is supported.Activating or de-activating a performance monitoring process can beperformed from the ITM-CIT orWaveStar® ITM-SC.

Note: OnWaveStar® ADM 16/1, 600 or 1200 monitoring points canonly be used in combination with Ruby controller hardware(LJB457B) and Ruby Cross-connect-64/32 (LJB434).

Performance monitoring for LAN ports

On the VC-3/VC-12 termination points that are connected to a WANport, the “normal” performance monitoring can be activated. The samecounters that apply for VC-3/VC-12TPs on any other port also applyto the VC-3/VC-12 TP’s on a WAN port.

Apart from this standard SDH PM, a limited amount of counters thatare dedicated to LAN/WAN ports are defined. Activation of thesecounters can be established by setting the LAN port mode tomonitored, selecting a LAN port or WAN port as active PM point,and setting the PM point type to LAN or WAN.

The supported dedicated parameters are:

• CbS (total number of bytes sent)

• CbR (total number of bytes received)

• pDe (packets in error dropped)

Note that CbS and CbR are rather traffic monitoring counters thanperformance monitoring counters, as they give insight in the trafficload in all places in the network. pDe is a real performancemonitoring counter as it gives an indication about the performance ofthe network. Only unidirectional PM is supported for theseparameters. SeeFigure 5-2, “Performance monitoring counters” (5-13)for the location of the measurements. Note that because of thedifference in units, bytes versus packets, the counters cannot becorrelated with each other. Also the counter for dropped packets

Administration Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

5 - 1 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 325: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

considers only packets dropped due to errors, and does not includepackets dropped due to congestion.

Performance Monitoring on LAN connections (Gigabit Ethernetports)

It is possible to monitor byte and packet related performanceparameters on any external Ethernet port and any internal port linkedwith VC-3/4-Xv channels. The following counters are supported foreach port:

• Outgoing number of bytes

• Incoming number of bytes

• Number of incoming packets dropped

Accumulation of counts in 15 min and 24 hour bins can be selectedper port. Recent bins are stored: 16 recent 15 min bins and 1 recent24 hours bin. Thresholding (TR/RTR) on counts of dropped incomingpackets can be enabled and configured per port.

Figure 5-2 Performance monitoring counters

Administration Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 1 3

Page 326: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Maintenance....................................................................................................................................................................................................................................

Maintenance signaling The system maintenance signals notify downstream equipment that afailure has been detected and alarmed by some upstream equipment,and notify upstream equipment to initiate trunk conditioning due to afailure detected downstream.

These alarm signals include alarm indication signals (AIS), far endreceive failure (FERF) signals, and unequipped signals (UNEQ).

AIS detection on 2 Mbit/sports for asynchronous

mapping

It is possible to monitor the CRC-4, E-bit and A-bit information inTS0 of any 2 Mbit/s in both directions for performance monitoringpurposes for G.704 structured 2 Mbit/s tributaries.

Alarms and status reports The system provides a report that lists all active alarm and statusconditions. This report is made available to theNavis® OpticalManagement System on demand. The identity of the condition isincluded in the report along with a time stamp indicating when thecondition was detected. There is an option to display specified subsetsof alarm conditions.

Element management andremote operations

interfaces

Before it can begin providing services, theWaveStar® ADM 16/1requires a large amount of provisioning data.

This data will be loaded upon installation in non-volatile memoriesbut needs a reliable backup to support repair and maintenanceprocedures. It is therefore assumed that the equipment is connected toa back-up database either via a local port or via the embeddedoperations channels.

The WaveStar® ADM 16/1 can be connected to a co-locatedWaveStar® ITM-SC Management System via the Q-LAN. At stationlevel and besides local or remoteNavis® Optical Management Systemfacilities, a craft interface terminal (ITM-CIT) can be used to carryout local management functions.

This application is often referred to as “Centralized Alarming andRemote Login”

Fault detection, isolationand reporting

When a fault is detected, theWaveStar® ADM 16/1 employsautomatic diagnostic to isolate the failed circuit pack or signal.Failures are reported to local maintenance personnel and operationssystems so that repair decisions can be made. If desired, operationssystem personnel and local maintenance personnel can use theITM-CIT to gain more detailed information on the fault condition.

Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

5 - 1 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 327: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

A maintenance history report containing past alarms, status, protectionswitching, and craft or management events is provided, and madeavailable to theNavis® Optical Management System on demand. Thissummary contains time stamp indicating when each condition wasdetected and cleared, or when a command was entered.

The WaveStar® ADM 16/1 system also automatically andautonomously reports all detected alarm and status conditions throughthe office alarm relays, user panel, equipment LEDs, and messagebased operations systems.

Reports

Active alarms and status

The WaveStar® ADM 16/1 provides a report showing all the activealarm and status conditions. The local alarms and status report aredisplayed automatically on the local ITM-CIT immediately after log inor directly on the network element management system. The reportshows the following alarm levels:

• PROMPT

• DEFERRED

• INFO

• NO REPORT.

The source address description of the alarm condition (for examplecontroller failure, high-speed signal failure) is included in the reportalong with the date and time detected. The report also shows whetherthe alarm condition affects operations. The option to display specifiedsubsets of alarms conditions by severity is also provided.

Reporting of analog parameters

Upon user request, theWaveStar® ITM-SC and ITM-CIT can reportthe values of the laser bias current and optical transmitted power(derived from backface current) of any STM-16 unit in the system. Inaddition, the value of the optical received power is reported, providedthe STM-16 port unit in question actually supports this parameter inits hardware.

State

An on-demand report displays the equipment and the equipmentstatus.

Equipment report contains:

• equipment

• location

• circuit pack type

Maintenance Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 1 5

Page 328: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• version

• slot status, (the slot status can be auto or equipped).

Equipment status contains:

• equipment

• location

• circuit pack type

• port status (if applicable)

• service status (if applicable).

Version/equipment List

The version/equipment list report is an on-demand report that lists thecircuit packs version and the software generic (if applicable). Thisreport also lists all of the circuit packs that are present.

Synchronization report

The synchronization report is an on-demand report that lists the statusof the system synchronization. This report lists all the clockparameters that can be interrogated.

Maintenance Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

5 - 1 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 329: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Provisioning....................................................................................................................................................................................................................................

The system supports many system applications by its provisioningfeatures.

Provisioning parameters are set by software control. These parametersvary from one installation to the next, and a wide range of options orin-service changes can be provisioned locally or remotely with the aidof an ITM-CIT or WaveStar® ITM-SC.

Default provisioning Installation provisioning is minimized with carefully chosen defaultvalues/parameters defined and maintained in the System Controller,and a simple command can be given to restore all default values. Allprovisioning data is stored in non-volatile memory to prevent data lossduring power failures.

Automatic provisioning onreplacement

Replacement of a faulty circuit pack is simplified by the automaticprovisioning of the original values. The system controller maintains aprovisioning map of the entire subrack so when a transmission orsynchronization circuit pack is replaced, the system controllerautomatically downloads values to the new circuit pack and initiatestesting of the new circuit pack. If the system controller itself isreplaced, provisioning data from a back-up database mounted in theWaveStar® ITM-SC, is automatically downloaded to the new SystemController’s non-volatile memory assumed it is empty.

If the controller database is not empty but valid, the choice is offeredto download or upload.

Provisioning reports The provisioning report, which is made available to theWaveStar®

ITM-SC on demand, contains the current values of all electronicallyprovisionable parameters.

Operations, administration, maintenance, andprovisioning

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

5 - 1 7

Page 330: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 331: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

6 Cross-product interworking

Overview....................................................................................................................................................................................................................................

Purpose This chapter contains a brief description of the Lucent TechnologiesSDH systems that interwork with theWaveStar® ADM 16/1 intoday’s telecommunications networks. The application of theWaveStar® ADM 16/1 is briefly described inChapter 3,“Applications”.

For more detailed information, reference is made to the Applicationand Planning Guide of the system concerned.

ContentsLucent Technologies SDH product family 6-2

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

6 - 1

Page 332: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Lucent Technologies SDH product family....................................................................................................................................................................................................................................

Overview Lucent Technologies offers the industryís widest range of high-qualitytransport systems and related services designed to provide totalnetwork solutions. Included in this offering is the opticalnetworkingproduct family. The optical networking product familyoffers telecommunications service providers advanced services andrevenue-generating capabilities.

Family members

• LambdaUnite® MultiService Switch (MSS)

• LambdaXtreme™ Transport

• Metropolis® ADM (Universal shelf)

• Metropolis® AM/AMS

• Metropolis® DMX Access Multiplexer

• Metropolis® DMXpress Access Multiplexer

• Metropolis® Enhanced Optical Networking (EON)

• Navis® Optical Capacity Analyzer (CA)

• Navis® Optical Customer Service Manager (CSM)

• Navis® Optical Management System (OMS)

• Navis® Optical Fault Manager

• Navis® Optical Integrated Network Controller (INC)

• Navis® Optical Network Management System (NMS)

• Navis® Optical Performance Analyzer (PA)

• Navis® Optical Provisioning Manager (PM)

• OptiGate™ OC-192 Transponder

• OptiStar™ Edge Switch

• OptiStar™ IP Encryption Gateway (IPEG)

• OptiStar™ MediaServe

• OptiStar™ Network Adapters

• Radio OEM

• Synchronization OEM

• TransLAN® Ethernet SDH Transport Solution

• WaveStar® ADM 16/1

• WaveStar® ADM 16/1 Compact

• WaveStar® ADM 4/1

• WaveStar® BandWidth Manager

Cross-product interworking

....................................................................................................................................................................................................................................

6 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 333: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• WaveStar® DACS 4/4/1

• WaveStar® Engineering Orderwire (EOW)

• WaveStar® ITM-SC

• WaveStar® OLS 1.6T

• WaveStar® TDM 10G (OC-192)

• WaveStar® TDM 10G (STM-64

• WaveStar® TDM 10G (OC-192)

• WaveStar® TDM 2.5G (OC-48)

Family features The optical networking products family offers customers

• SONET and/or SDH-based services

• Scalable cross-connect, multiplex, and transport services

• Ethernet transport over SONET or SDH networks

• Network consolidation and reliability

• Interoperability with other vendorsí products

• Coordination of network element and element management

Deployment oftransmission systems

From a network point of view, SDH is the answer to the rapidlychanging demand for services on the one hand, and on the other theincreasing cost of implementing these services in switchingequipment. The latter means that the switching equipment has toprovide for larger and larger areas to keep cost per line at aneconomical level. This causes an increase in the deployment oftransmission systems because the average distance betweensubscribers and the central exchange (and also the distance betweenexchanges) increases. The cost penalty for extra transmissionequipment was relatively low thanks to new developments intransmission technology (e.g. optical fiber).

PDH transmission network The existing (plesiochronous digital hierarchy, PDH) transmissionnetwork is structured with a fixed multiplex architecture (2/8, 8/34,34/140 Mbit/s). Digital distribution frames are installed between themultiplex equipment where the signal cabling is connected. Therouting of some of the data streams is established with theseconnections. The other streams are demultiplexed to 2 Mbit/s andconnected to the exchange. Making changes in such a transmissionnetwork requires manual action and accurate administration. Soflexibility is not optimal and operating costs increase when thedemand is changing continuously.

Lucent Technologies SDH product family Cross-product interworking

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

6 - 3

Page 334: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 335: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

7 Physical design

Overview....................................................................................................................................................................................................................................

Purpose This chapter informs about the physical design of theWaveStar®

ADM 16/1 components.

ContentsIntroduction 7-2

The subrack 7-3

The printed circuit boards 7-5

The dual WDM unit 7-6

The interconnection panel (ICP) 7-7

Face plates for front access units 7-9

ETSI compliant racks 600 × 600 mm 7-10

Horizontal connector plate (HCP) 7-11

Fiber connector conversion kit 7-12

Rack fiber guidance 7-14

Cabling 7-15

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 1

Page 336: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Introduction....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 is Lucent Technologies’ third generationof SDH equipment. In particular in the mechanical design of thesystem, the overall system requirements of compact design andflexibility where given special attention. This system has a volume ofonly one third of its previous generation.

To get big functional units, a design based on ETSI 600 × 600 mmfootprint was developed. To keep the equipment on the righttemperature over the whole operating temperature range, fans wereintroduced. These fans assure a uniform temperature pattern in thesystem for a reliable and long equipment life.

Another system characteristic is its flexibility. On the STM-16 lineside a variety of line port units can be placed and especially with the9 tributary slots, almost every combination of trib units is possible. Asa consequence, configurations with theWaveStar® ADM 16/1 are soflexible that at the moment of deployment, almost no precautions haveto be made to be future proof for many years.

Physical design

....................................................................................................................................................................................................................................

7 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 337: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The subrack....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 subrack constructed in the new D700construction is based on the ETSI floor space of 600 × 600 mm. Twosubracks can be housed in an ETSI compliant rack.

The dimensions of the subrack are 750 × 500 × 545 mm (H × W× D). It is designed for front and rear access and consists of twomajor parts:

1. The equipment area that accommodates the plug-in units fromfront and backside.

2. The airflow areas of which one is located at the bottom of thesubrack and one at the top. The lower airflow area is equippedwith three self-contained fan units. Via the area at the top thecooling air exits the subrack.

Two out of three fans are enough for adequate cooling. In case of amalfunction a fan unit can be replaced in a subrack that is operational.The correct operation of the fans is monitored by an alarm system.The lower airflow area with fans is separated from the equipment areawith a removable dust filter.

Figure 7-1 Subrack

Physical design

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 3

Page 338: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

In the subrack there is room for:

• Two STM-16 line port units

• Two power and timing units (PTU) which operate in the 1+1protection mode. One PTU can feed the whole subrack.

• Two cross-connect Units (CC) in 1+1 protection mode can behoused. If no equipment protection is needed, one unit issufficient.

• One System Controller (SC) acts as the control interface to theElement Management Systems. The SC also handles the DCCchannel. The SC is not involved in line or tributary transmissionaspects and also the CC settings stay unchanged when the SC isremoved.

• Additional 9 places for tributary slots are available.

The subrack is closed by metal face and rear plates with metal springcontacts.

The subrack with metal cover plates forms the EMC boundary of theWaveStar® ADM 16/1. Light guides are placed in the face plate insuch a way, that the LED’s on the SC can be monitored withoutopening the EMC area.

For ESD precautions, a person installing equipment must carry abracelet. On front and backside of the Lucent Technologies racks anearth contact is provided to connect the bracelet to.

The subrack Physical design

....................................................................................................................................................................................................................................

7 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 339: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The printed circuit boards....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 subrack accommodates the circuit packs.

From the front side the big, almost rectangular packs with a size of3N can be inserted with the help of two latches per pack.

The so called paddle boards can be used at the rear side of thebackplane. For each tributary unit, these paddle boards have to beused, in case of conversion and/or protection. Paddleboards aremechanically secured with a bar in the back of the system. Of the twopaddle boards per slot the upper one sends its connecting cables to thetop and the lower one sends its cables to the bottom of the subrack.

All circuit packs make use of the new 2 mm pitch connector systemas generally used with theWaveStar® ADM 16/1.

There is one front inserted circuit pack which differs in size, namelythe power and timing pack with a height of 1.5N. Those packs arelocated at the very right side of the subrack.

Apart from the System Controller which has several LEDs all otherfront packs have a LED for alarm purposes. On the optical paddleboards LEDs are also planned.

Physical design

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 5

Page 340: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The dual WDM unit....................................................................................................................................................................................................................................

A dual WDM unit can be placed in the subrack at the back. This unitsupports co- and contra directional operation.

Within the WDM kit a bracket is included to mount the optical unit. 4optical 0 dB SC connectors connect the two STM-16 units usinguniversal connectors for FC built-outs. The two outputs are made withuniversal connectors with support SC of FC optical connectors.

With an extra bracket a second WDM can be mounted in the firstWDM, which is placed within the subrack.

Physical design

....................................................................................................................................................................................................................................

7 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 341: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The interconnection panel (ICP)....................................................................................................................................................................................................................................

The interconnection box forms the physical interface for thepermanent and semi permanent supervision interfaces of theWaveStar® ADM 16/1. A suppress button like on the SC makes itpossible to suppress alarms without opening the EMC boundary of thesubrack.

The ICP is part of the subrack, but it has no cover in front of it.

A number of interfaces are available on the interconnection panel for:

• Timing

• Suppress button outside the EMC-boundary (similar to SystemController)

• Station alarms

• Miscellaneous discrete inputs and outputs

• Access to overhead bytes

• Management interfaces.

Table 7-1 Connectors

Connector Connector Type Use

STATION CLOCK IN 1 D-SUB 9P MALE External Timing input 1

STATION CLOCK IN 2 D-SUB 9P MALE External Timing input 2

STATION CLOCK OUT 1 D-SUB 9P FEMALE External Timing output 1

STATION CLOCK OUT 2 D-SUB 9P FEMALE External Timing output 2

STATION ALARM D-SUB 25P FEMALE Station Alarm cabling

Figure 7-2 Interconnection panel

Physical design

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 7

Page 342: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 7-1 Connectors (continued)

Connector Connector Type Use

V11-1 D-SUB 15P FEMALE Access to user overhead bytes, V.11provisionable

V11-2 D-SUB 15P FEMALE Access to user overhead bytes, V.11provisionable

G703-1 D-SUB 9P FEMALE Access to user overhead bytes, G.703provisionable

G703-2 D-SUB 9P FEMALE Access to user overhead bytes, G.703provisionable

G703-3 D-SUB 9P FEMALE Access to user overhead bytes, G.703provisionable

G703-4 D-SUB 9P FEMALE Access to user overhead bytes, G.703provisionable

MD I/O D-SUB 25P FEMALE Miscellaneous input and outputs

Q-LAN-10BT MODULAR JACK 8P ITM SC connection, (Twisted PairEthernet)

QLAN1 BNC 50 Ω FEMALE Q-LAN cabling

QLAN2 BNC 50 Ω FEMALE Q-LAN cabling

The interconnection panel (ICP) Physical design

....................................................................................................................................................................................................................................

7 - 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 343: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Face plates for front access units....................................................................................................................................................................................................................................

It is possible to equip the front access units with face plates. Theseface plates are designed in such, that mounting is also possible onalready deployed units. In this way it is possible to create a uniformfront sight of theWaveStar® ADM 16/1 with the front subrack coverremoved.

The face plates are fully EMC and ESD safe.

For empty places dummy units are available in all sizes.

Physical design

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 9

Page 344: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

ETSI compliant racks 600 × 600 mm....................................................................................................................................................................................................................................

Lucent Technologies can provide a number of dedicated ETSIcompliant racks for housing of theWaveStar® ADM 16/1 subracks.

Table 7-2 Racks

Rack Type Remarks

ETSI Rack Frame 2200 × 600 × 600 mm (H × W × D) assembled

ETSI Rack Frame 2200 × 600 × 600 mm (H × W × D) as a kit

ETSI Rack Frame 2600 × 600 × 600 mm (H × W × D) assembled

ETSI Rack Frame 2600 × 600 × 600 mm (H × W × D) as a kit

Earthquake Proof Rack 2000 × 600 × 600 mm (H × W × D) Assembled; zone 4 proof

The racks are equipped with full height doors on the front and theback. The 2600-mm rack version has a separate cover, which can beplaced above the doors in case top access is required. The same covercan be placed under the doors when bottom access (for instance withcomputer floors) is required.

The assembled version of the 2600-mm rack is intended for topaccess.

Every rack can house two subracks.

There are limits in cabling flexibility related to the rack size. Ingeneral, the higher the rack the more flexible the cabling philosophy.

Each rack has two alarm lamps on front and back side for prompt anddeferred maintenance alarms. The equivalent lamps of front andbackside are set in parallel.

The four ETSI racks have standard improved fiber management. Thismeans that fibers in the rack are housed in a tube which separatesthem from the electrical cables. So the fiber cables that are morevulnerable, are better protected and bow radii are also bettermaintained.

The ETSI racks have got one fiber guide standard mounted over thefull working length of the rack.

For distribution of the power within the racks towards the subrack, aPower Distribution panel is needed. The panel has the function tosecure the power network, by using automatic fuses, included as well.

Physical design

....................................................................................................................................................................................................................................

7 - 1 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 345: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Horizontal connector plate (HCP)....................................................................................................................................................................................................................................

The horizontal connector plate (HCP) is situated at the top of a rack.It is a combination of two metal plates covering together the whole600 × 600 mm of rack surface in the top. The plates are completelyfilled with “holes” to mount D-sub connectors. So the intra-rack 2Mbit/s cabling ends on this position. The customer can connect itsdedicated station cable to the corresponding D-sub connector of theWaveStar® ADM 16/1. The HCP is also used to mount the 34 Mbit/sup to STM-1e coax cabling. Two coax cables are used together withan adapter filler plate to mount two APT-1000 contacts (male) in therecoup.

The 2600-mm rack has enough room for two subracks with the intrarack cabling and the curves needed for the cabling. Within a 2200-mmrack, there is not enough bending area for the great number of 2Mbit/s intra rack cabling area and there a lot of limitations becomevisible if two subracks have to be housed. Then the semi prefabcabling is a big relief.

Table 7-3 Overview of interface types, cables and connector

Interface type Cable type Connector type onconnector plate

Number of cables/connectors per slot

2 Mbit/s COAX 25 pins D-sub 16 8-fold

2 Mbit/s UTP 25 pins D-sub 16 8-fold

34/45 Mbit/s COAX APT-1000V 24 coax

140 Mbit/s COAX APT-1000V 8 coax

STM-1e COAX APT-1000V 8 coax

STM-0o OPTICAL Universal Built-out 24 fibers

STM-1o OPTICAL SC 8 fibers

Physical design

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 1 1

Page 346: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Fiber connector conversion kit....................................................................................................................................................................................................................................

Today the number of optical channels, that from a mechanical orlayout perspective can be placed on a board, is strongly dependent onthe size of the optical send receiver module. The pitch between twomodules depends heavily on the optical connector used.

All STM-4 and STM-16 optical packs (except for theWaveStar® OLS1.6T compatible optics packs, these support LC connectors) areequipped with a universal built-out optical connector type, allowingthe connector type to FC/PC or SC to be changed on-site dependingon the customer needs.

The STM-1 optical circuit packs do have a SC-connection with aconversion possibility to FC/PC and LC.

The STM-0 does have a LC-connection (a miniature high performanceconnector design by Lucent Technologies) with a conversionpossibility to FC/PC or SC.

The WaveStar® ADM 16/1 supports two ways of optical connectorconversion:

1. In order to support FC and SC connectors, a fiber connectorconversion kit has been defined. A total of 64 optical connectionsper subrack can be adapted in rack to the customer connector.This is enough to convert a completely filled subrack withSTM-1 optical units from LC towards FC or SC.The optical conversion is done by a fiber with a length of 0.5 mand an LC connector at one end and the universal connector atthe other side. With the 0 dB adapter in the universal connector,the connector can be made FC or SC. Ordering is per 4 fibers, 0dB adapters and mounting material in one orderable kit. The kitis defined in a way that 4 is the smallest number of opticalinterfaces per paddle board, and thus the smallest number thatcan be ordered. The customer does not have to order moreconversion cables than needed with start up.

2. When conversion in the rack is no prerequisite longer conversioncables can be used. There is a number of cables which can beused from the optical system paddle board directly to the opticaldistribution frame (ODF). Both LC to FC and LC to SC aresupported

Physical design

....................................................................................................................................................................................................................................

7 - 1 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 347: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

These cables are also necessary when a number of optical contactslarger than 64 must be converted.

Table 7-4 Optical cable conversion

Length (m) LC to FC LC to SC

5 Yes Yes

10 Yes Yes

15 Yes Yes

20 Yes Yes

25 Yes Yes

Fiber connector conversion kit Physical design

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 1 3

Page 348: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Rack fiber guidance....................................................................................................................................................................................................................................

In the latest racks standard improved fiber guidance is implemented.

The guides are square pipes mounted in the space between subrackand rack. In these pipes an endless cord is mounted to support theinstalling of fibers during installation or to install more fibers if thesystem is already operational.

The first fiber guides are mounted at the right of a rack looking froma front perspective. The initial guides are used for the STM-16 fibersand a limited number of for instance STM-1 optical fibers. Whenmore fibers are used in a system, more guides should be mounted. Itis important to realize, that due to the inflexibility of the guidematerial, mounting of fiber guides with subracks in place is notpossible and the guides have to be mounted in a rack in thebeginning.

When electrical and optical units are mixed in one rack, the fibersmust be kept at the right and the electrical cabling at the left of thesubracks. If only optical tributary interfaces are used, then fiber guidescan be mounted at the left and the right.

Table 7-5 Rack fiber guides

Number of fiber guides

Fiber size Max. numberof fibers

1 subrack 2 subracks

1.5 mm 20 1 2

1.5 mm 40 3 5

3 mm 18

Physical design

....................................................................................................................................................................................................................................

7 - 1 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 349: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Cabling....................................................................................................................................................................................................................................

The trend in the digital transmission industry is a rapid decrease inequipment volume and a rapid increase in density. This trend isparticularly noticeable with theWaveStar® ADM 16/1. TheWaveStar® ADM 16/1, Lucent Technologies’ new generation of SDHequipment, has a very compact design. This causes a challenge for themechanical engineers who are responsible for the design of theWaveStar® ADM 16/1 connections to the outside world, thetransmission cabling. This is true for the electrical as well as for theoptical cabling. For theWaveStar® ADM 16/1 a couple of newtransmission cables has been designed. A new set of smaller cableswas necessary to connect the great number of circuits in aWaveStar®

ADM 16/1 to the DDF and the ODF.

Alternatives For electrical low and high frequent cabling and for fiber connections,the WaveStar® ADM 16/1 system supports two methods fortransmission cabling:

1. On rack level an interface with standard electrical connectors(sub-D or APT-1000) and for fiber the customer requestedconnector (FC or SC) is delivered. The connection from thesystem to DDF or ODF is realized with customer definedcabling.

2. Semi prefab cabling with the 2-mm pitch equipment connector atone side for electrical cabling. LC connector on one fiber sideand SC or FC connectors at the other end and fibers withsufficient length to go directly from equipment to the ODF.

Both methods have their own advantages.

Table 7-6 Characteristics of customer cabling and semi prefab cabling

A: Customer Cabling B: Semi Prefab Cabling

Expansive, one extra contact needed Lowest cost

Less flexible with expansion later Most flexible with expansion later

Local cable buy; exact cable length possibleduring installation

Cable to be ordered with a certain length; lossespossible

For 75 Ω coax expansive cable needed 75Ω via symmetrical lower cost cable and Balunconnector

Different cables needed for 75Ω and 120Ω For 75 and 120Ω the same cable can be used

For lengths greater then 30 m

Physical design

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 1 5

Page 350: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Customer cabling option A The customer interface is situated in the top of theWaveStar® ADM16/1 rack at the Horizontal Connector Plate (HCP) outside thesubracks, outside the EMC boundary. Here a maximum of 1008 2Mbit/s channels can be connected dependent of the rack size.

The connector philosophy is the same as used for ISM and SLM. Thatmeans SUB-D connectors for 2 Mbit/s for both 75Ω and 120Ω. TheISM prefab cables can be reused for the 2 Mbit/sWaveStar® ADM16/1 connections.

Pre-fabricated cables already in use with ISM speed up the installationwork enormously, since no connectors have to be mounted in thefield, which is very time consuming. Also, the quality of theconnections will be much higher. And all cables are tested before theyare shipped, so the number of cables that need to be repaired duringinstallation test drops significantly.

For STM-1e, 34, 45 and 140 Mbit/s the APT-1000 coax connector isreused. For these frequencies no prefab cables from the HCP to theDDF is available. The cables from the APT-1000 contact on the HCPto the DDF is as with ISM and SLM constructed in the field duringinstallation. In the field cable manufacturing is of course also possiblefor the 2 Mbit/s cabling.

Cabling Physical design

....................................................................................................................................................................................................................................

7 - 1 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 351: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Semi prefab electricalcabling option B

A concept of semi-prefab cables for the 2 Mbit/s connection had beendeveloped. This means that the equipment side of a 2 Mbit/s cable ispre-connected with the 2-mm equipment connector. The cable isavailable in 8, 15 , 22 and 30 m such that most equipment to DDFdistances can be bridged.

For a number of reasons Lucent has developed one type of 2 Mbit/scable for 75 as well as for 120Ω. This means that it is possible to useshielded twisted pair (STP) cable to connect theWaveStar® ADM16/1 to the DDF. The impedance transformation for 75Ω is realizedin a special so-called Balun connector that can directly be connectedto the customer DDF.

Lucent supports the 1.6/5.6, BT-43, BNC and the APT-1000connectors on the 75Ω side of the DDF.

For the lowest cost a solution with UTP cable is possible. Wire wrapto a 120-Ω DDF or even using a low cost non-EMC close Balun for75 Ω connectivity is possible. Cable lengths identical as for the STPcable: 8, 15, 22 and 30 m.

The semi prefab cables can be connected, with the equipmentconnector side, directly to the 120-Ω paddle boards 2-mm Pitchconnector.

There is a third way to connect cables to theWaveStar® ADM 16/1and that is completely field made cables.

There are installation tools available to connect cables with the correctspecifications to a 2-mm pitch connector with IDC contacts. This ishowever, because of the expected unreliability of the connections andthe expansive tools a non-preferred solution. Only used for limitedrepair functions.

Cabling Physical design

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

7 - 1 7

Page 352: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA
Page 353: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

8 System planning and engineering

Overview....................................................................................................................................................................................................................................

Purpose This chapter summarizes the descriptive information used for systemplanning. It describes the basic engineering rules for theWaveStar®

ADM 16/1 Multiplexer and Transport System.

ContentsNetwork planning 8-2

Network synchronization 8-3

WaveStar® ADM 16/1 system planning andengineering

8-5

Paddle boards (electrical interfaces) 8-16

Configurations 8-18

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 1

Page 354: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Network planning....................................................................................................................................................................................................................................

There are a number of issues to consider when planning a network.Projected customer requirements determine the network topology andtraffic capacities needed, both initially and in the future. Theseconsiderations drive, in their turn, the equipment planning andphysical installation. In addition synchronization and managementneed to be planned.

The building constructed or selected to serve as a terminal office orrepeater site should be inspected and an overall plan developed beforethe equipment is ordered and installed. This plan should consider theeventual system size and include the following:

• Synchronization

• Protection

• Capacity

• Span length (Chapter 9, “Technical data”)

• Optical line loss budget (Chapter 9, “Technical data”)

• Floor-plan layout

• Equipment interconnection (Chapter 9, “Technical data”)

• Cabling (Chapter 7, “Physical design”)

• Environmental considerations (Chapter 9, “Technical data”)

• Power planning (Chapter 9, “Technical data”)

Lucent Technologies offers engineering and installation services toplan and install theWaveStar® ADM 16/1 system and relatedsystems. For more information about Lucent Technologies engineeringand installation services refer toChapter 11, “Product support”.

System planning and engineering

....................................................................................................................................................................................................................................

8 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 355: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Network synchronization....................................................................................................................................................................................................................................

Introduction The planning of the synchronization network should be considered forthe network as a whole. The guidelines for synchronization networkengineering can be found in ITU-T Recommendation G.803, AnnexIII. The WaveStar® ADM 16/1 supports all synchronization featuresneeded (as specified in ITU-T Recommendation G.781, Option 1) toengineer the network synchronization according to ITU-TRecommendations.

Careful consideration should be given to the correct design of theSDH network’s synchronization. Proper synchronization engineeringminimizes timing instabilities, maintains quality transmission networkperformance and limits network degradation due to unwantedpropagation of network synchronization faults.

The following list contains some key recommendations in respect tonetwork synchronization:

• A group of interconnected SDH network elements, which allcontain an internal clock according to G.813 option 1, like theWaveStar® ADM 16/1, form, from a synchronization point ofview, a so-called “SEC sub-network”. All SDH network elementsin this cloud provide each other timing information via STM-Nlinks. Such a network part should receive, via at least twoindependent paths, synchronization from the network clock,usually a PRC (See ITU-T Recommendation G.811) and aback-up clock (usually an SSU according to G.812), in case thePRC fails.

• 2 MHz and 2 Mbit/s links are used to bring in the timinginformation from the network clock into the SEC sub-network.The planning of the links between the PRC and all SSUs in anetwork are part of the over-all operator’s networksynchronization plan.

• Within the SEC sub-network the SDH network elements shouldbe configured in such a way that each network element receivesat least two reference signals. Selection between the alternativereferences should be based on the SSM protocol.

• When engineering the SEC sub-network synchronization oneshould avoid that chains of SECs are present or can be formedwhich exceed the number of 20 nodes (excluding SDHregenerators).

• As a guideline, it is recommended to engineer the SECsub-network in such a way that under any combination of twoindependent failures, no timing loops can be created orinstabilities in the reference selectors can occur.

System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 3

Page 356: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

The WaveStar® ADM 16/1 meets ITU-T Recommendation G.781 andsupports the following features to support the engineering of thesynchronization network:

• Possibility to assign STM-N inputs (both aggregate and tributary),2 Mbit/s traffic inputs and external synchronization inputs (2MHz or 2 Mbit/s) as references for the system or the externalsynchronization output.

• Assignment/Unassignment of synchronization references. Up to 8references can be assigned (two external timing inputs, twoaggregate interfaces and four tributary interfaces). Each can beprovisioned with a priority

• Independent selection of references for the system clock and theexternal timing output.

• Optional enabling/disabling of the SSM algorithm.

• Within the SSM algorithm it is possible to assign a fixed SSMvalue to any incoming reference and to define a squelchthreshold for the external synchronization output

Network synchronization System planning and engineering

....................................................................................................................................................................................................................................

8 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 357: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

WaveStar® ADM 16/1 system planning and engineering....................................................................................................................................................................................................................................

Subrack layout The WaveStar® ADM 16/1 program contains a subrack forapplications up to 504 × 2 Mbit/s add/drop capacity or a maximumof 8 × STM-4. Dimensions: 750 × 500 × 545 mm (H × W × D).This subrack is called the high-density subrack.

The system circuit packs are cooled by an integrated fan-unit. It formspart of theWaveStar® ADM 16/1 subrack. An InterConnection Panel(ICP) is integrated within the subrack (EFA4). The following can bemade available on the ICP: Overhead Channels, Station Alarms,Miscellaneous Discrete Inputs and Outputs and several networkmanagement connectors.

High-density or 9tributary-slot subrack

(EFA4)

The WaveStar® ADM 16/1 high-density subrack contains 16 slots inwhich the following circuit packs can be inserted from the front:

Table 8-1 Configuration of EFA4

Slot position Abbreviation Slot name

1 SC System Controller

2, 13 CC1, CC2 Cross-connect

3, 14 LS1, LS2 Line interface position

4, 5, 6, 7, 8, 9, 10, 11, 12 TS1 TS9 Tributary interface position

15, 16 PT1, PT2 Power and timing

System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 5

Page 358: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Configuration rules The WaveStar® ADM 16/1 subrack has a maximum 9 slots availablefor Tributary circuit packs.

All tributary slots of the High-density subrack can be used for regulartraffic, with the following exceptions:

• Slot 4:In case an SI-1/4, PI-E4/4, SPIA-1E4/4B (used in E4 or STM-1electrical mode) or SIA-1/4B (used in STM-1 electrical mode)tributary unit is inserted in slot 4, this unit is always consideredthe protecting unit in the 1:N (N = 1, , 4) equipment protectionscheme for STM-1 electrical or E4 interface cards. This meansthat it is not possible to have regular traffic carrying unit of thosetypes in slot 4. If no STM-1 equipment protection is needed, thisslot can be used for one of the following cards:

– PI-DS1/63 (protected or un protected)

– PI-E1/63 (protected or unprotected)

Figure 8-1 WaveStar ® ADM 16/1 EFA4 high-density subrack

FRONT VIEW

SC

CC

1

TS

1

LS 1

TS

2

TS

3

TS

4

TS

5

TS

6

TS

7

TS

8

TS

9

CC

2

LS 2

PT

1P

T 2

Stationclock

slot # 1 2 3 4 5 6 7 8 9 10 11 12 13 14

slot#15

slot#16

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

8 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 359: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

– PI-DS3/12 or PI-E3DS3/6+6 (protected or unprotected)

– PI-E3DS3/12 (protected or unprotected)

– PI-E3/6 (protected or unprotected)

– PI-DS3/6 (protected or unprotected)

– SA-1/4B (MSP protected or unprotected)

– SI-S4.1/1 (MSP protected or unprotected)

– SPIA-1E4/4B used in STM-1 optical mode (MSP protectedor unprotected)

– SIA-1/4B (MSP protected or unprotected)

– SA-0/12 (MSP protected or unprotected)

– IP-LAN/8 Tlan+ (unprotected)

– IP-GE/2 (Gigabit Ethernet option card, unprotected)Note: STM-1 electrical and E4 units can be protected by anequipment protection at the same time by using a SPIA-1E4/4Bin slot 4. The SPIA-1E4/4B automatically configures itself in thecorrect operation mode. Additionally in R4.0 it is possible toin-service upgrade an older E4 or STM-1e unit in a worker slotto a SPIA-1E4/4B or SIA-1/4B unit. A SPIA-1E4/4B orSIA-1/4B unit in a worker slot cannot be protected by an olderE4 or STM-1e unit in slot 4, even not when both units arerunning in the same mode.Note: The SA-1/4B and SPIA-1E4/4B or SA-1/4B and SIA-1/4Bcannot be used in the same MSP protection group.

• Slot 12:In case a PI-E1/63 or PI-DS1/63 tributary unit is inserted in slot12, this unit is always considered the protecting unit in the 1:N (N= 1, , 8) equipment protection scheme for E1 or DS1 interfacecards. This means that it is not possible to have regular trafficcarrying unit of those types in slot 12.If no 1.5 or 2 Mbit/s equipment protection is needed this slot canbe used by one of the following cards:

– SPIA-1E4/4B used in STM-1E or E4 mode (unprotectedonly)

– SIA-1/4B used in STM-1E mode (unprotected only)

– SI-1/4 (unprotected only)

– PI-E4/4 (unprotected only)Note: DS1 and E1 units can not be equipment protected at thesame time. The unit type entered in slot 12 determines whetherE1 or DS1 units can be protected.

The following overview indicates the Tributary port circuit packs andthe position they can have in theWaveStar® ADM 16/1 subrack:

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 7

Page 360: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Configuration of theWaveStar® ADM 16/1

Circuit pack (CP) Function Circuit Pack Name Possible slot position in WaveStar ® ADM16/1

Tributary port 1.5 Mbit/s signals –worker/unprotected

PI-DS1/63 4, 5, 6, 7, 8, 9, 10, or 11

Tributary port 1.5 Mbit/s signals – eqpt.protection

PI-DS1/63 12 (protects 4 through 11)

Tributary port 2 Mbit/s signals –worker/unprotected

PI-E1/63 4, 5, 6, 7, 8, 9, 10, or 11

Tributary port 2 Mbit/s signals – eqpt.protection

PI-E1/63 12 (protects 4 through 11)

Tributary port 34 and 45 Mbit/s signals –worker/unprotected

PI-E3DS3/6+6 4, 5, 6, 7, 8, 9, 10, or 11

Tributary port 34 and 45 Mbit/s signals –worker/unprotected

PI-E3DS3/12 4, 5, 6, 7, 8, 9, 10, or 11

Tributary port 34 and 45 Mbit/s signals –eqpt. protection

PI-E3DS3/6+6 5 (protects 4), 7 (protects 6), 9 (protects 8)or 11 (protects 10)

Tributary port 34 and 45 Mbit/s signals –eqpt. protection

PI-E3DS3/12 5 (protects 4), 7 (protects 6), 9 (protects 8)or 11 (protects 10)

Tributary port 45 Mbit/s signals –worker/unprotected

PI-DS3/12 4, 5, 6, 7, 8, 9, 10, or 11

Tributary port 45 Mbit/s signals – eqpt.protection

PI-DS3/12 5 (protects 4), 7 (protects 6), 9 (protects 8)or 11 (protects 10)

Tributary port 45 Mbit/s signals signals –worker/unprotected

PI-DS3/6 4, 5, 6, 7, 8, 9, 10, or 11

Tributary port 45 Mbit/s signals signals –eqpt. protection

PI-DS3/6 5 (protects 4), 7 (protects 6), 9 (protects 8)or 11 (protects 10)

Tributary port 34 Mbit/s signals signals –worker/unprotected

PI-E3/6 4, 5, 6, 7, 8, 9, 10,or 11

Tributary port 34 Mbit/s signals signals –worker/unprotected

PI-E3/6 5 (protects 4), 7 (protects 6), 9 (protects 8)or 11 (protects 10)

Tributary port STM-0 signals –worker/unprotected

SA-0/12 4, 5, 6, 7, 8, 9, 10, 11, or 12

Tributary port STM-0 signals – MSPprotection

SA-0/12 5 (protects 4), 7 (protects 6), 9 (protects 8)or 11 (protects 10)

Tributary port 140 Mbit/s signals –worker/unprotected

PI-E4/4

SPIA-1E4/4B (E4 mode)

5, 6, 7, 8, 9, 10, 11, or 12

Tributary port 140 Mbit/s signals – eqpt.protection

PI-E4/4

SPIA-1E4/4B (E4 mode)

4 (protects 5, 6, 7 and/or 8)

Tributary port STM-1E signals –worker/unprotected

SI-1/4

SPIA-1E4/4B (STM-1E mode)

SIA-1/4B (STM-1E mode)

5, 6, 7, 8, 9, 10, 11, or 12

Tributary port STM-1E signals – eqpt.protection

SI-1/4

SPIA-1E4/4B (STM-1E mode)

SIA-1/4B (STM-1E mode)

4 (protects 5, 6, 7 and/or 8)

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

8 - 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 361: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Circuit pack (CP) Function Circuit Pack Name Possible slot position in WaveStar ® ADM16/1

Tributary port STM-1O signals –worker/unprotected

SA-1/4

SA-1/4B

SPIA-1E4/4B (STM-1O mode)

SIA-1/4B (STM-1O mode)

4, 5, 6, 7, 8, 9, 10, 11, or 12

Tributary port STM-1O signals – MSPprotection

SA-1/4B

SPIA-1E4/4B (STM-1O mode)

SIA-1/4B (STM-1O mode)

5 (protects 4), 7 (protects 6), 9 (protects 8)or 11 (protects 10)

Tributary port STM-4 signals –worker/unprotected

SI-S4.1/1

SI-L4.2/1

4, 5, 6, 7, 8, 9, 10, 11, or 12

Tributary port STM-4 signals – MSPprotection

SI-S4.1/1

SI-L4.2/1

5 (protects 4), 7 (protects 6), 9 (protects 8)or 11 (protects 10)

LAN interface unprotected IP-LAN 8 Tlan+ 4, 5, 6, 7, 8, 9, 10, or 11

Gigabit Ethernet interface unprotected IP-GE/2 4, 5, 6, 7, 8, 9, 10, 11, or 12

Circuit pack naming The circuit packs described below can be used in the high-densitysubrack of theWaveStar® ADM 16/1. Some of the interface circuitpacks of theWaveStar® ADM 16/1 can be inserted in a Line or aTributary slot, they are pin-compatible.

Table 8-2 Circuit packs

Circuit Pack (CP) Name Description

SI Synchronous Interface

PI Plesiochronous Interface

IP Internet Protocol

SPIA Synchronous and Plesiochronous Adapter Interface

SIA Synchronous Adapter Interface

PB paddle board

SA Synchronous Adapter

TI Timing Interface

OI Optical Interface

LBPA Line Booster Pre-Amplifier

SC System Controller

CC Cross-Connect

PT-stnd Power and Timing CP standard

PT-str3 Power and Timing CP 0.37ppm

Interface Type Description

U 16.2 Ultra long-haul, STM-16, 1550 nm

V 16.2 Very long-haul optical, STM-16, 1550 nm

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 9

Page 362: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-2 Circuit packs (continued)

L 16.3 Long-haul optical, STM-16, 1550 nm

L 16.2 Long-haul optical, STM-16, 1550 nm

L 16.1 Long-haul optical, STM-16, 1310 nm

L 4.2 Long haul optical, STM-4, 1550 nm

S 4.1 Short haul optical, STM-4, 1310 nm

L 1.2 Long haul optical, STM-1, 1550 nm

S 1.1 Short haul optical, STM-1, 1310 nm

S 0.1 Short haul optical, STM-0, 1310 nm

I 1.1 Intrastation optical, STM-1, 1310 nm

16EML.x/1 (x from 9190 to 9585) STM-16, 1530- 1565 nm, interworking with theWaveStar® OLS 1.6T

0 STM-0, 1310 nm

1 STM-1 electrical

E4 140 Mbit/s

DS3 45 Mbit/s

E3 34 Mbit/s

E1 2 Mbit/s

DS1 1.5 Mbit/s

LAN Local Area Network

Paddle board type Description

75 75 Ω through connection board, no protection relays

100 100 W converter, no protection relays

120 120 Ω converter, no protection relays

P75 75 Ω converter with protection relays

P100 100 W converter with protection relays

P120 120Ω converter with protection relays

PP STM-1E/E4 protection selector/bridge (protection version)

PW STM-1E/E4 protection selector/bridge (worker version)

Naming examples

SPIA-1E4/4: Synchronous and Plesiochronous Adapter circuit pack,STM-1 and 140 Mbit/s, 4 channels per circuit pack.

PB-E1/P75/32: paddle board, 75Ω, used for protection, 32 channelsper paddle board.

Core configuration of theWaveStar ® ADM 16/1

The core configuration of theWaveStar® ADM 16/1 always consistsof the following.

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

8 - 1 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 363: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-3 Core configuration of the WaveStar ® ADM 16/1

Circuit Pack

(CP) Name

Item Code Comcode Description Number Slot

position

Remark

Subrack 9TADB

EFA4 848414710 Subrack 9TAD (700) B 1 N.A.

SC

SC2

LJB400

LJB457B

107870446

108829813

System Controller 1 1

- WaveStar® ADM 16/1 systemsoftware

1 n.a. 1

- WaveStar® ADM 16/1 backupsoftware

1 n.a. 2

CC-64/32

CC-64/16

CC-64/32B

LJB420

LJB420T

LJB434

108244104

108988320

108645581

Cross-Connect CPs 1 2 3

PT-stnd

PT-str3

LMB400

LMB401

107870057

107870453

Power Filter and Timing CPs 1 16 4

Remarks:

1. System software is downloaded to the SC in he factory.

2. Backup software is delivered on tape (WaveStar® ITM-SC) or ona disk (ITM-CIT).

3. If CC protection is required, an additional CC circuit pack shouldbe engineered in slot #13.

4. If PT protection is required, an additional PT circuit pack shouldbe engineered in slot #15.

Depending on required hold-over stability, two versions of the PTcircuit pack are available

• PT-stnd. This unit meets the specifications of G.813 option 1.Lifetime oscillator accuracy: 4.6 ppm

• PT-str3. This unit meets the specifications of G.813 option 1.Lifetime oscillator accuracy: 4.6 ppm. In addition the hold-overstability for the first 24 hours of hold-over is specified at 0.37ppm.

Line interface units

Table 8-4 Line interface units

Circuit Pack (CP)

Name

Item Code Comcode Description Slot

position

Remark

SI-L16.1/1C

SI-L16.1/1D

LJB425B

LJB435

108441981

108647215

Line-port long-haul 2.5 Gbit/s 1310 nm,according table L 16.1 in G.957, oneinterface per CP

3, 14 1, 3

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 1 1

Page 364: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-4 Line interface units (continued)

Circuit Pack (CP)

Name

Item Code Comcode Description Slot

position

Remark

SI-L16.2/1C

SI-L16.2/1D

LJB426B

LJB436

108441999

108647223

Line-port long-haul 2.5 Gbit/s 1550 nm,according tables L 16.2 and L16.3 inG.957, one interface per CP

3, 14 1, 3

SI-L16.3/1B

Limited Availability!

LJB419B 108442005 Line-port long-haul 2.5 Gbit/s 1550 nm,4 dB better than tables L 16.2 and L16.3in G.957, one interface per CP

3, 14 1, 3, 4

SI-L16.3/1Y

Limited Availability!

LJB419Y 108442013 Factory selected line-port long-haul 2.5Gbit/s 1550 nm, 6 dB better than tablesL16.2 and L16.3 in G.957, one interfaceper CP

3, 14 1, 2, 3, 4

SI-EMLU16.2/1

Limited Availability!

LJB423 108278086 Interface Port 2.5 Gbit/s with EMLtransmitter to interwork withbooster/pre-amplifier, one interface perCP

3, 14 4

SI-EMLU16.2/1P LJB500 109180554 Interface Port 2.5 Gbit/s with EMLtransmitter to interwork withbooster/pre-amplifier, one interface perCP

3, 14 1

LPBA-U16.2/1 LJB413 107870313 Booster/Pre-amplifier unit for U-16.2and U-16.3 applications G.691

4, 5, 6, 7,8, 9, 10,11, or 12

LBA-V16.2/1 LJB433 108648841 Booster unit for V-16.2 and V-16.3applications G.691

4, 5, 6, 7,8, 9, 10,11, or 12

SI-16EML80.1/1throughSI-16EML80.16/1

Limited Availability!

LJB441throughLJB456

108278xxx Interface port 2.5 Gbit/s EML, toWaveStar® OLS 80G, one wavelengthper CP

3, 14 4

SI-16EML9xxx/1 LJB501throughLJB580

10844xxxx Interface port 2.5 Gbit/s EML, toWaveStar® OLS 1.6T, one wavelengthper CP

3, 14 1

The following line interfaces are available now or supported fromprevious releases:

Remark:

1. All STM-16 optical packs, except for SI-16EML9xxx/1 andSI-EMLU16.2/1P which support an LC-connector, support theuniversal build-out optical connector type. This connector typesupports both FC/PC and SC optical connectors. For powerbudget details please refer toChapter 9, “Technical data”.

2. The “ITU-T + 6dB” units are only available in limited quantities.Specific requests should be made to Product Mangement.

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

8 - 1 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 365: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

3. The units SI-L16.1/1C, SI-L16.2/1C, SI-L16.3/1B andSI-L16.3/1Y support reporting of analog optical parameters(optical transmit power, optical received power, laser biascurrent).

4. Discontinued Availability (DA) in April 2002!

Optical tributary interfaces The following line interfaces are available now or supported fromprevious releases:

Table 8-5 Optical tributary interfaces

Circuit Pack (CP)

Name

Item Code Comcode Description Slot

position

Remark

SA-0/12 LJB421 108275587 STM-0 adapter board for four STM-0interfaces. Supports AU-3/TU-3conversion, MSP and loopbacks

4 thru 11 1

OI-0/6 PBD3 108333436 STM-0 1310 nm; 6 Interfaces perinterface board.

behind

4 thru 11

1

SPIA-1E4/4B LJB431B

LJB431T

108681651

108988312

STM-1 adapter board for four STM-1optical interfaces in AU-4 or AU-3/TU-3conversion mode. Supports MSP, tributaryDCC and loopbacks, also usable forelectrical interfaces, please refer toTable8-6, “Electrical tributary interfaces”(8-14).

4 thru 11 2, 4

SIA-1/4B LJB439B

LJB439T

108884610

108988338

STM-1 adapter board for four STM-1optical interfaces in AU-4 or AU-3/TU-3conversion mode. Supports MSP, tributaryDCC and loopbacks, also usable forelectrical interfaces, please refer toTable8-6, “Electrical tributary interfaces”(8-14).

4 thru 11 2, 4

OI-S1.1/2SC PBD4 108584962 Optical Short haul STM-1 1310 nm; 2Interfaces per interface board

behind

4 thru 11

2, 5

OI-L1.2/2 PBA10 108600800 Optical Long haul STM-1 1550 nm; 2Interfaces per interface board

behind

4 thru 11

2, 5

SI-L4.2/1 LJB405C 108862509 Optical Long haul STM-4 1550 nm;Supports AU-4-4c, AU-4 and AU-3/TU-3conversions

behind

4 thru 11

3

SI-S4.1/1 LJB416B 108681669 Optical Short haul STM-4 1310 nm.Supports AU-4-4c, AU-4 and AU-3/TU-3conversion, MSP, DCC and loopbacks

4 thru 11 3

IP-GE/2 LJB460 109198226 Gigabit Ethernet option card 4 thru12

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 1 3

Page 366: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Remarks:

1. One or two OI-0/6 optical paddle boards have to be installedbehind each SA-0/12 STM-0 circuit pack. Each paddle boardprovides 6 optical interfaces with LC connector type.

2. One or two OI-S1.1/2 or OI-L1.2/2 optical paddle boards have tobe installed behind each SPIA-1E4/4B or SIA-1/4B STM-1Ocircuit pack. Each paddle board provides 2 optical interfaces withSC connector type. A mix of OI-S1.1/2 and OI-L1.2/2 is allowedbehind SPIA-1E4/4B or SIA-1/4B STM-1O circuit pack.

3. The optical interface is integrated on the STM-4 main board. Nooptical adapter units are needed.

4. The SA-1/4 and SA-1/4B units are no longer available andreplaced by SPIA-1E4/4B and SIA-1/4B.

5. The PBD2 has been DA’ed. For customers that require STM-1Ointerfaces with LC-connectors a patchcord can be used.Comcode: 108113853, 4 ft LC-SC Connector

Electrical tributaryinterfaces

The following line interfaces are available now or supported fromprevious releases:

Table 8-6 Electrical tributary interfaces

Item Code Comcode Description Slot

position

Remark

LJB411LJB411T 107870339

108988000

2 Mbit/s, 75 Ω

63 interfaces per CP

4-12 1

LJB430 108442021 1.5 Mbit/s, 75Ω

63 interfaces per CP

4-12 2

LJB427 108330366 34 and 45 Mbit/s

6 interfaces of each type per CP

4-12

LJB463 109407916 34 and 45 Mbit/s, 12 independentlyprovisionable interfaces

4-12

LJB424 108281387 45 Mbit/s

12 interfaces per CP

4-12

LJB461 109198234 6 interfaces, 45 Mbit/s 4-12

LJB462 109198242 6 interfaces, 34 Mbit/s 4-12

LJB414 107880148 140 Mbit/s4 interfaces per CP 4-12 3, 5

LJB431BLJB431T 108681651

108988000

140 Mbit/s / STM-1E, 4 interfaces per CP, alsousable for optical interfaces, please refer toTable 8-5, “Optical tributary interfaces” (8-13).

4-12 3

LJB439BLJB439T 108884610

108988000

STM-1E, 4 interfaces per CP, also usable foroptical interfaces, please refer toTable 8-5,“Optical tributary interfaces” (8-13).

4-12 3

LJB458 108567488 10/100 Mbit/s BASE-T, 8 interfaces per CP 4-11

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

8 - 1 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 367: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-6 Electrical tributary interfaces (continued)

Item Code Comcode Description Slot

position

Remark

LJB459 109107383 10/100 Mbit/s BASE-T, 8 interfaces per CP,TransLAN®

4-11

Remarks:

1. Equipment protection functionality is provided by the circuit packin tributary slot 12. Impedance adaptation to 75/120Ω and/orequipment protection functionality can be provided by additionalpaddle boards.

2. Equipment protection functionality is provided by the circuit packin tributary slot 12. Impedance adaptation to 100 W or equipmentprotection functionality can be provided by additional paddleboards.

3. Equipment protection functionality can be provided by additionalpaddle boards.

4. Equipment protection functionality is provided by the circuit packin tributary slot 4 and paddle boards.

5. In the Sapphire Release the PI-E4/4 is no longer available. It isreplaced by the SPIA-1E4/4B.

6. In the Sapphire Release the SI-1/4 is no longer available. It isreplaced by the SPIA-1E4/4B or SIA-1/4B.

Timing andsynchronization interfaces

(DS0 markets; Japan andUSA)

These timing interfaces are available for the DS0 markets.

Table 8-7 Timing and synchronization interfaces for DS0 markets

Circuit Pack(CP) Name

ItemCode

Comcode Description Slot position Remark

TI-DS2DS0/1 LJC400 108095654 Timing Interface board

64+8 kHz Sync Input +

6312 kHz Sync Output

Behind PT-stnd 1

Remark:

1. A maximum of 2 × TI-DS2DS0/1 can be engineered per subrack.

WaveStar® ADM 16/1 system planning andengineering

System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 1 5

Page 368: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Paddle boards (electrical interfaces)....................................................................................................................................................................................................................................

A variety of paddle boards exists to interconnect the system directlyor indirectly to the office cabling. In addition, paddle boards can beused for equipment protection and/or impedance adaptation. Allpaddle boards can be inserted from the rear of the equipment and fitto the 2 mm pitch backplane connectors.

Paddle boards are always needed for 1.5 Mbit/s and 2 Mbit/sinterfaces. Other electrical interface types can be used without paddleboards (if protection is not needed now or in the future).

Paddle boards are half height boards and two paddle boards have tobe mounted behind each corresponding main board to be able toaccess all interface ports. Also if less than half the interfaces on a unithave to be cabled, it is still necessary to equip both paddle boards toget a valid configuration. The two paddle boards behind each unithave to be identical and are mounted in 180 mirrored fashion.

Table 8-8 Paddle boards

PB Name Item

Code

Comcode Description Position Notes

Protection and impedance conversion 1.5 Mbit/s paddle boards (PB)

PB-DS1/100/32 PBA6 108442047 Conversion to 100 W, 32channels, unprotectedapplications

Behind each unprotectedPI-DS1/63, Slot 4-11.

1

PB-DS1/P100/32 PBA7 108442054 Conversion to 100 W, 32channels, protectedapplications

Behind each worker PI-DS1/63,Slot 4-11.

1, 2

Protection and impedance conversion 2 Mbit/s paddle boards (PB)

PB-E1/75/32 PBA3 107967952 Unprotected 75 Wapplications, 32 channels

Behind each unprotectedPI-E1/63, Slot 4-11.

3

PB-E1/P75/32 PBA1 107967937 Protected 75 W applications,32 channels

Behind each worker PI-E1/63,Slot 4-11.

3

PB-E1/120/32 PBA4 107967960 Conversion to 120 W, 32channels, unprotectedapplications

Behind each unprotectedPI-E1/63, Slot 4-11.

3

PB-E1/P120/32 PBA2 107967945 Conversion to 120 W, 32channels, protectedapplications

Behind each worker PI-E1/63,Slot 4-11.

2, 3

Paddle boards for 34/45 Mbit/s:

PB-E3DS3/P/6 PBC2 108330382 6 channels, 1+1 equipmentprotection application

Behind each worker/protectionpair in slots 4/5, 6/7, 8/9 or10/11. The paddle boardstraddles two slot positions

4

Paddle boards for STM-1 and 140 Mbit/s:

System planning and engineering

....................................................................................................................................................................................................................................

8 - 1 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 369: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-8 Paddle boards (continued)

PB Name Item

Code

Comcode Description Position Notes

PB-1E4/PW/2 PBA5 107972218 Protect PB, 2 ch. for STM-1and 140 Mbit/s, worker unitversion

Behind worker STM-1E or E4units, slot positions 5-8

5, 6

PB-1E4/PW/2 Cx PBA8 108538646 Protect PB, 2 ch. for STM-1and 140 Mbit/s, worker unitversion, coax interfaces

Behind worker STM-1E or E4units, slot positions 5-13

5, 6

PB-1E4/PP/2 PBB1 107972382 Protect PB, 2 ch. for STM-1and 140 Mbit/s, protectionboard version

Behind protection STM-1E orE4 unit, PB slot positionXP01&XP02

5

PB-LAN PBA9 108573056 PB behind the LAN interfaceunit

Behind LAN units, slotposition 4-11

Remarks:

1. This paddle board can be used with the PI-DS1/63.

2. No paddle board is needed behind the protecting DS1 or E1circuit pack, slot position 12.

3. This paddle board can be used with the PI-E1/63.

4. This paddle board can be used with adjacent pairs of PI-DS3/12or PI-E3DS3/6+6 units or with the PI-DS3/6 or PI-E3/6.

5. This paddle board can be used with the SI-1/4, PI-E4/4,SIA-1/4B (in STM-1E mode) and SPIA-1E4/4 (in STM-1E or E4mode).

6. If 1:N protection is needed at a later time, the worker unit paddleboards have to be installed immediately (in through mode). Laterthe protection unit paddle board can be added in an in-serviceupgrade.

Paddle boards (electrical interfaces) System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 1 7

Page 370: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Configurations....................................................................................................................................................................................................................................

Table 8-9 WaveStar ® ADM 16/1 terminal STM-16 (0 × 1, all interfaces)

Circuit Pack (CP) Name Description Number Remark

Subracks

1 EFA 4 High-density subrack 1

Core circuit packs

3 SC

SC2

System Controller 1

5 CC-64/32

CC-64/32B

Cross-Connect CP 64 × 64 HO, 32 × 32 LO 2 1

7 PT-stnd Power and Timing CP 4.6 ppm 2 2

8 PT-str3 Power and Timing CP 0.37 ppm

Line-interface circuit packs

9 SI-L 16.1/1C SI-L16.1/1D Long-haul 2.5 Gbit/s 1310 nm, L 16.1, ITU range 2 3

10 SI-L 16.2/1C SI-L16.2/1D

Long-haul 2.5 Gbit/s 1550 nm, L 16.2 , ITU range

13 SI-16EMLx/1 Interworking packs OLS 1.6T (80 differentwavelengths)

Boosters and pre-amplifier circuit packs

14a SI-EMLU16.2/1 EML 2.5 Gbit/s 1550 nm U 16.2

14b LPBA-U 16.2/3 Booster and Pre-Amplifier (160km)

14c LBA-V16.2/1 Booster (120km)

Optical tributaries

15 SA-0/12 Converter board STM-0

15a OI-0/6 Optical Interface STM-0 1310 nm

16 SI-S 4.1/1 Short Haul, STM-4 1310 nm 2

Optical / electrical tributaries

17 SPIA-1E4/4B 140 Mbit/s or STM-1 electrical or STM-1 optical 3 6

SIA-1/4B STM-1 electrical or STM-1 optical

17a OI-S 1.1/2 Optical Interface Short Haul STM-1 1310 nm 2

17b PB-1E4/PW/ 2 working PB, 2 ch. for STM-1 and 140 Mbit/s 2

17c PB-1E4/PP/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s 2

Electrical tributaries

18 PI-E1/63 63 × 2 Mbit/s, 75Ω 2 4

18a PB-E1/75/32 Direct-through connect PB 75Ω, 32 ch.

18b PB-E1/P75/ 32 Protection PB 75Ω, 32 ch. 4 5

System planning and engineering

....................................................................................................................................................................................................................................

8 - 1 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 371: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-9 WaveStar ® ADM 16/1 terminal STM-16 (0 × 1, all interfaces) (continued)

Circuit Pack (CP) Name Description Number Remark

18c PB-E1/120/ 32 75 to 120Ω conversion PB, 32 ch.

18d PB-E1/ P120/32 75 to 120Ω conversion PB, with protection, 32 ch.

19 PI-E3DS3/ 6+6 6 × 45 Mbit/s and 6 × 34 Mbit/s

19a PI-E3DS3/ 12 12 × 34 Mbit/s or 45 Mbit/s (provisionable)

20 PI-DS3/12 12 × 45 Mbit/s 2

19,20a

PB-E3DS3/6 Protection PB 34 / 45 Mbit/s, 6 ch. 2

Additional timing circuit packs

21 TI-DS2DS0/ 1 Timing Interface CP 64+8 kHz In/6312 kHz Out

22 TI-I 1.1DS0/ 1 Timing Interface CP 64+8 kHz In/155.52 MHz Out

Remarks:

1. If protection of the CC is not required, 1 × CC should beengineered.

2. If protection of the PT-stnd is not required, 1 × PT-stnd shouldbe engineered. If a stability of 0.37 ppm for 24 hour is required,the PT-str3 should be engineered.

3. Depending on the optical power budget needed.

4. If protection of the 2 Mbit/s interfaces is not required, noadditional PI-E1/ 63 should be engineered for protection.

5. If protection of the 2 Mbit/s interfaces is not required, no paddleboard has to be engineered. It should be noted that if protectionis required in future, it is advisable to install the direct-throughconnect paddle board 75Ω, 32 ch paddle board as this will easeinstallation practice in future. If 120Ω interfaces are needed,either 16 × PB-E1/120/32 (no 2 Mbit/s protection) or 16× PB-E1/P120/32 (2 Mbit/s protection) should be engineered

6. STM-1 electrical and E4 units can be equipment protected at thesame time by using a SPIA-1E4/4B in slot 4. The SPIA-1E4/4Bautomatically configures itself in the correct operation mode.Additionally in R4.0 it is possible to in-service upgrade an olderE4 or STM-1e unit in a worker slot to a SPIA-1E4/4B orSIA-1/4B unit. A SPIA-1E4/4B or SIA-1/4B unit in a worker slotcannot be protected by an older E4 or STM-1e unit in slot 4,even not when both units are running in the same mode.

Configurations System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 1 9

Page 372: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-10 WaveStar ® ADM 16/1 add/drop multiplexer STM-16 (higher order interfaces)

Circuit Pack (CP) Name Description Number Remark

Subracks

1 EFA 4 High-density subrack 1

Core circuit packs

3 SC

SC2

System Controller 1

5 CC-64/32

CC-64/32B

Cross-Connect CP 64 × 64 HO, 32 × 32 LO 2

7 PT-stnd Power and Timing CP 4.6 ppm 2 2

8 PT-str3 Power and Timing CP 0.37 ppm

Line-interface circuit packs

9 SI-L 16.1/1C SI-L16.1/1D

Long-haul 2.5 Gbit/s 1310 nm, L 16.1, ITU range

10 SI-L 16.2/1C SI-L16.2/1D

Long-haul 2.5 Gbit/s 1550 nm, L 16.2, ITU range

11 SI-L 16.3/1B Long-haul 2.5 Gbit/s 1550 nm, L 16.3 2 3

13 SI-16EMLx/1 Interworking packs OLS 1.6T (80 differentwavelengths)

Boosters and pre-amplifier circuit packs

14a SI-EMLU16.2/1 EML 2.5 Gbit/s 1550 nm U 16.2

14b LPBA-U 16.2/3 Booster and Pre-Amplifier (160km)

14c LBA-V16.2/1 Booster (120km)

Optical tributaries

15 SA-0/12 Converter board STM-0

15a OI-0/6 Optical Interface STM-0 1310 nm

16 SI-S 4.1/1 Short Haul, STM-4 1310 nm 3

Optical / electrical tributaries

17 SPIA-1E4/4B 140 Mbit/s or STM-1 electrical or STM-1 optical 4 4

SIA-1/4B STM-1 electrical or STM-1 optical

17a OI-S 1.1/2 Optical Interface Short Haul STM-1 1310 nm 8

17b PB-1E4/PW/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s

17c PB-1E4/PP/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s

Electrical tributaries

18 PI-E1/63 63 × 2 Mbit/s, 75 Ω

18a PB-E1/75/32 Direct-through connect PB 75Ω, 32 ch.

18b PB-E1/P75/ 32 Protection PB 75Ω, 32 ch.

18c PB-E1/120/ 32 75 to 120Ω conversion PB, 32 ch.

Configurations System planning and engineering

....................................................................................................................................................................................................................................

8 - 2 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 373: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-10 WaveStar ® ADM 16/1 add/drop multiplexer STM-16 (higher order interfaces)(continued)

Circuit Pack (CP) Name Description Number Remark

18d PB-E1/ P120/32 75 to 120Ω conversion PB, with protection, 32 ch.

19 PI-E3DS3/ 6+6 6 × 45 Mbit/s and 6 × 34 Mbit/s

19a PI-E3DS3/ 12 12 × 34 Mbit/s or 45 Mbit/s (provisionable)

20 PI-DS3/12 12 × 45 Mbit/s

19,20a

PB-E3DS3/6 Protection PB 34 / 45 Mbit/s, 6 ch.

Additional timing circuit packs

21 TI-DS2DS0/ 1 Timing Interface CP 64+8 kHz In/6312 kHz Out

22 TI-I 1.1DS0/ 1 Timing Interface CP 64+8 kHz In/155.52 MHz Out

Remarks:

1. If protection of the CC is not required, 1 × CC should beengineered.

2. If protection of the PT-stnd is not required, 1 × PT-stnd shouldbe engineered. If a stability of 0.37 ppm for 24 hour is required,the PT-str3 should be engineered.

3. Depending on the optical power budget needed.

4. STM-1 electrical and E4 units can be equipment protected at thesame time by using a SPIA-1E4/4B in slot 4. The SPIA-1E4/4Bautomatically configures itself in the correct operation mode.Additionally in R4.0 it is possible to in-service upgrade an olderE4 or STM-1e unit in a worker slot to a SPIA-1E4/4B orSIA-1/4B unit. A SPIA-1E4/4B or SIA-1/4B unit in a worker slotcannot be protected by an older E4 or STM-1e unit in slot 4,even not when both units are running in the same mode.

Table 8-11 WaveStar ® ADM 16/1 add/drop multiplexer STM-16 (long distance rings, with LOgrooming of 504 × 2 Mbit/s)

Circuit Pack (CP) Name Description Number Remark

Subracks

1 EFA 4 High-density subrack 1

Core circuit packs

3 SC

SC2

System Controller 1

5 CC-64/32

CC-64-32B

Cross-Connect CP 64 × 64 HO, 32 × 32 LO 2 1

Configurations System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 2 1

Page 374: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-11 WaveStar ® ADM 16/1 add/drop multiplexer STM-16 (long distance rings, with LOgrooming of 504 × 2 Mbit/s) (continued)

Circuit Pack (CP) Name Description Number Remark

7 PT-stnd Power and Timing CP 4.6 ppm 2 2

8 PT-str3 Power and Timing CP 0.37 ppm

Line-interface circuit packs

9 SI-L 16.1/1C SI-L16.1/1D

Long-haul 2.5 Gbit/s 1310 nm, L 16.1, ITU range

10 SI-L 16.2/1C SI-L16.2/1D

Long-haul 2.5 Gbit/s 1550 nm, L 16.2, ITU range

11 SI-L 16.3/1B Long-haul 2.5 Gbit/s 1550 nm, L 16.3 1 3

13 SI-16EMLx/1 Interworking packs OLS 1.6T (80 differentwavelengths)

Boosters and pre-amplifier circuit packs

14a SI-EMLU16.2/1 EML 2.5 Gbit/s 1550 nm U 16.2 1 3

14b LPBA-U 16.2/3 Booster and Pre-Amplifier (160km) 1 3

14c LBA-V16.2/1 Booster (120km)

Optical tributaries

15 SA-0/12 Converter board STM-0

15a OI-0/6 Optical Interface STM-0 1310 nm

16 SI-S 4.1/1 Short Haul, STM-4 1310 nm

Optical / electrical tributaries

17 SPIA-1E4/4B 140 Mbit/s or STM-1 electrical or STM-1 optical

SIA-1E4/4B STM-1 electrical or STM-1 optical

17a OI-S 1.1/2 Optical Interface Short Haul STM-1 1310 nm

17b PB-1E4/PW/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s

17c PB-1E4/PP/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s

Electrical tributaries

18 PI-E1/63 63 × 2 Mbit/s, 75 Ω 9 4

18a PB-E1/75/32 Direct-through connect PB 75Ω, 32 ch.

18b PB-E1/P75/ 32 Protection PB 75Ω, 32 ch. 18 5

18c PB-E1/120/ 32 75 to 120Ω conversion PB, 32 ch.

18d PB-E1/ P120/32 75 to 120Ω conversion PB, with protection, 32 ch.

19 PI-E3DS3/ 6+6 6 × 45 Mbit/s and 6 × 34 Mbit/s

19a PI-E3DS3/ 12 12 × 34 Mbit/s or 45 Mbit/s (provisionable)

20 PI-DS3/12 12 × 45 Mbit/s

19,20a

PB-E3DS3/6 Protection PB 34 / 45 Mbit/s, 6 ch.

Additional timing circuit packs

Configurations System planning and engineering

....................................................................................................................................................................................................................................

8 - 2 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 375: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-11 WaveStar ® ADM 16/1 add/drop multiplexer STM-16 (long distance rings, with LOgrooming of 504 × 2 Mbit/s) (continued)

Circuit Pack (CP) Name Description Number Remark

21 TI-DS2DS0/ 1 Timing Interface CP 64+8 kHz In/6312 kHz Out

22 TI-I 1.1DS0/ 1 Timing Interface CP 64+8 kHz In/155.52 MHz Out

Remarks:

1. If protection of the CC is not required, 1 × CC should beengineered.

2. If protection of the PT-stnd is not required, 1 × PT-stnd shouldbe engineered. If a stability of 0.37 ppm for 24 hour is required,the PT-str3 should be engineered.

3. Depending on the optical power budget needed.

4. If protection of the 2 Mbit/s interfaces is not required, noadditional PI-E1/ 63 should be engineered for protection.

5. If protection of the 2 Mbit/s interfaces is not required, no paddleboard has to be engineered. It should be noted that if protectionis required in future, it is advisable to install the direct-throughconnect paddle board 75Ω, 32 ch paddle board as this will easeinstallation practice in future. If 120Ω interfaces are needed,either 16 × PB-E1/120/32 (no 2 Mbit/s protection) or 16× PB-E1/P120/32 (2 Mbit/s protection) should be engineered

Table 8-12 WaveStar ® ADM 16/1 add/drop multiplexer STM-16 (STM-1 and STM-4ring-closure on tributaries)

Circuit Pack (CP) Name Description Number Remark

Subracks

1 EFA 4 High-density subrack 1

Core circuit packs

3 SC SC2 SystemController

1

5 CC-64/32

CC-64/32B

Cross-Connect CP 64 × 64 HO, 32 × 32 LO 2 1

7 PT-stnd Power and Timing CP 4.6 ppm 2 2

8 PT-str3 Power and Timing CP 0.37 ppm

Line-interface circuit packs

9 SI-L 16.1/1C SI-L16.1/1D

Long-haul 2.5 Gbit/s 1310 nm, L 16.1, ITU range 2 3

10 SI-L 16.2/1C SI-L16.2/1D

Long-haul 2.5 Gbit/s 1550 nm, L 16.2, ITU range

Configurations System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 2 3

Page 376: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-12 WaveStar ® ADM 16/1 add/drop multiplexer STM-16 (STM-1 and STM-4ring-closure on tributaries) (continued)

Circuit Pack (CP) Name Description Number Remark

13 SI-16EMLx/1 Interworking packs OLS 400G (80 differentwavelengths)

Boosters and pre-amplifier circuit packs

14a SI-EMLU16.2/1 EML 2.5 Gbit/s 1550 nm U 16.2

14b LPBA-U 16.2/3 Booster and Pre-Amplifier (160km)

14c LBA-V16.2/1 Booster (120km)

Optical tributaries

15 SA-0/12 Converter board STM-0

15a OI-0/6 Optical Interface STM-0 1310 nm

16 SI-S 4.1/1 Short Haul, STM-4 1310 nm 2

Optical / electrical tributaries

17 SPIA-1E4/4B 140 Mbit/s or STM-1 electrical or STM-1 optical 4

SIA-1/4B STM-1 electrical or STM-1 optical

17a OI-S 1.1/2 Optical Interface Short Haul STM-1 1310 nm 8

17b PB-1E4/PW/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s

17c PB-1E4/PP/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s

Electrical tributaries

18 PI-E1/63 63 × 2 Mbit/s, 75 Ω

18a PB-E1/75/32 Direct-through connect PB 75Ω, 32 ch.

18b PB-E1/P75/ 32 Protection PB 75Ω, 32 ch.

18c PB-E1/120/ 32 75 to 120Ω conversion PB, 32 ch.

18d PB-E1/ P120/32 75 to 120Ω conversion PB, with protection, 32 ch.

19 PI-E3DS3/ 6+6 6 × 45 Mbit/s and 6 × 34 Mbit/s

19a PI-E3DS3/ 12 12 × 34 Mbit/s or 45 Mbit/s (provisionable)

20 PI-DS3/12 12 × 45 Mbit/s

19,20a

PB-E3DS3/6 Protection PB 34 / 45 Mbit/s, 6 ch.

Additional timing circuit packs

21 TI-DS2DS0/ 1 Timing Interface CP 64+8 kHz In/6312 kHz Out

22 TI-I 1.1DS0/ 1 Timing Interface CP 64+8 kHz In/155.52 MHz Out

Configurations System planning and engineering

....................................................................................................................................................................................................................................

8 - 2 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 377: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Remarks:

1. If protection of the CC is not required, 1 × CC should beengineered.

2. If protection of the PT-stnd is not required, 1 × PT-stnd shouldbe engineered. If a stability of 0.37 ppm for 24 hour is required,the PT-str3 should be engineered.

3. Depending on the optical power budget needed.

Table 8-13 WaveStar ® ADM 16/1; Japanese and United States of America uses

Circuit Pack (CP) Name Description Number Remark

Subracks

1 EFA 4 High-density subrack 1

Core circuit packs

3 SC

SC2

System Controller 1

5 CC-64/32

CC-64/32B

Cross-Connect CP 64 × 64 HO, 32 × 32 LO 2 1

7 PT-stnd Power and Timing CP 4.6 ppm

8 PT-str3 Power and Timing CP 0.37 ppm 2 2

Line-interface circuit packs

9 SI-L 16.1/1C SI-L16.1/1D

Long-haul 2.5 Gbit/s 1310 nm, L 16.1, ITU range 1 3

10 SI-L 16.2/1C SI-L16.2/1D

Long-haul 2.5 Gbit/s 1550 nm, L 16.2, ITU range 1 3

13 SI-16EMLx/1 Interworking packs OLS 1.6T (80 differentwavelengths)

Boosters and pre-amplifier circuit packs

14a SI-EMLU16.2/1 EML 2.5 Gbit/s 1550 nm U 16.2

14b LPBA-U 16.2/3 Booster and Pre-Amplifier (160km)

14c LBA-V16.2/1 Booster (120km)

Optical tributaries

15 SA-0/12 Converter board STM-0 2

15a OI-0/6 Optical Interface STM-0 1310 nm 4

16 SI-S 4.1/1 Short Haul, STM-4 1310 nm 2

Optical / electrical tributaries

17 SPIA-1E4/4B 140 Mbit/s or STM-1 electrical or STM-1 optical 2

SIA-1/4B STM-1 electrical or STM-1 optical

17a OI-S 1.1/2 Optical Interface Short Haul STM-1 1310 nm 4

Configurations System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 2 5

Page 378: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-13 WaveStar ® ADM 16/1; Japanese and United States of America uses (continued)

Circuit Pack (CP) Name Description Number Remark

17b PB-1E4/PW/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s

17c PB-1E4/PP/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s

Electrical tributaries

18 PI-E1/63 63 × 2 Mbit/s, 75 Ω

18a PB-E1/75/32 Direct-through connect PB 75Ω, 32 ch.

18b PB-E1/P75/ 32 Protection PB 75Ω, 32 ch.

18c PB-E1/120/ 32 75 to 120Ω conversion PB, 32 ch.

18d PB-E1/ P120/32 75 to 120Ω conversion PB, with protection, 32 ch.

19 PI-E3DS3/ 6+6 6 × 45 Mbit/s and 6 × 34 Mbit/s

19a PI-E3DS3/ 12 12 × 34 Mbit/s or 45 Mbit/s (provisionable)

20 PI-DS3/12 12 × 45 Mbit/s 2

19,20a

PB-E3DS3/6 Protection PB 34 / 45 Mbit/s, 6 ch. 2

Additional timing circuit packs

21 TI-DS2DS0/ 1 Timing Interface CP 64+8 kHz In/6312 kHz Out 2

22 TI-I 1.1DS0/ 1 Timing Interface CP 64+8 kHz In/155.52 MHz Out

Remarks:

1. If protection of the CC is not required, 1 × CC should beengineered.

2. If protection of the PT-stnd is not required, 1 × PT-stnd shouldbe engineered. If a stability of 0.37 ppm for 24 hour is required,the PT-str3 should be engineered.

3. Depending on the optical power budget needed.

Table 8-14 WaveStar ® ADM 16/1 local cross-connect

Circuit Pack (CP) Name Description Number Remark

Subracks

1 EFA 4 High-density subrack 1

Core circuit packs

3 SC

SC2

System Controller 1

5 CC-64/32

CC-64/32B

Cross-Connect CP 64 × 64 HO, 32 × 32 LO 2 1

7 PT-stnd Power and Timing CP 4.6 ppm 2 2

8 PT-str3 Power and Timing CP 0.37 ppm

Configurations System planning and engineering

....................................................................................................................................................................................................................................

8 - 2 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 379: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-14 WaveStar ® ADM 16/1 local cross-connect (continued)

Circuit Pack (CP) Name Description Number Remark

Line-interface circuit packs

9 SI-L 16.1/1C Long-haul 2.5 Gbit/s 1310 nm, L 16.1, ITU range 3

10 SI-L 16.2/1C Long-haul 2.5 Gbit/s 1550 nm, L 16.2, ITU range

13 SI-16EMLx/1 Interworking packs OLS 1.6T (80 differentwavelengths)

Boosters and pre-amplifier circuit packs

14a SI-EMLU16.2/1 EML 2.5 Gbit/s 1550 nm U 16.2

14b LPBA-U 16.2/3 Booster and Pre-Amplifier (160km)

14c LBA-V16.2/1 Booster(120km)

Optical tributaries

15 SA-0/12 Converter board STM-0

15a OI-0/6 Optical Interface STM-0 1310 nm

16 SI-S 4.1/1 Short Haul, STM-4 1310 nm 2

Optical / electrical tributaries

17 SPIA-1E4/4B 140 Mbit/s or STM-1 electrical or STM-1 optical 3 6

SIA-1/4B STM-1 electrical or STM-1 optical

17a OI-S 1.1/2 Optical Interface Short Haul STM-1 1310 nm 2

17b PB-1E4/PW/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s 2

17c PB-1E4/PP/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s 2

Electrical tributaries

18 PI-E1/63 63 × 2 Mbit/s, 75 Ω 2 4

18a PB-E1/75/32 Direct-through connect PB 75Ω, 32 ch.

18b PB-E1/P75/ 32 Protection PB 75Ω, 32 ch. 4 5

18c PB-E1/120/ 32 75 to 120Ω conversion PB, 32 ch.

18d PB-E1/ P120/32 75 to 120Ω conversion PB, with protection, 32 ch.

19 PI-E3DS3/ 6+6 6 × 45 Mbit/s and 6 × 34 Mbit/s 2

19a PI-E3DS3/ 12 12 × 34 Mbit/s or 45 Mbit/s (provisionable)

20 PI-DS3/12 12 × 45 Mbit/s

19,20a

PB-E3DS3/6 Protection PB 34 / 45 Mbit/s, 6 ch. 2

Additional timing circuit packs

21 TI-DS2DS0/ 1 Timing Interface CP 64+8 kHz In/6312 kHz Out

22 TI-I 1.1DS0/ 1 Timing Interface CP 64+8 kHz In/155.52 MHz Out

Configurations System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 2 7

Page 380: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Remarks:

1. If protection of the CC is not required, 1 × CC should beengineered.

2. If protection of the PT-stnd is not required, 1 × PT-stnd shouldbe engineered. If a stability of 0.37 ppm for 24 hour is required,the PT-str3 should be engineered.

3. No line port units are needed.

4. If protection of the 2 Mbit/s interfaces is not required, noadditional PI-E1/ 63 should be engineered for protection.

5. If protection of the 2 Mbit/s interfaces is not required, no paddleboard has to be engineered. It should be noted that if protectionis required in future, it is advisable to install the direct-throughconnect paddle board 75Ω, 32 ch paddle board as this will easeinstallation practice in future. If 120Ω interfaces are needed,either 16 × PB-E1/120/32 (no 2 Mbit/s protection) or 16× PB-E1/P120/32 (2 Mbit/s protection) should be engineered

6. STM-1 electrical and E4 units can be equipment protected at thesame time by using a SPIA-1E4/4B in slot 4. The SPIA-1E4/4Bautomatically configures itself in the correct operation mode.Additionally in R4.0 it is possible to in-service upgrade an olderE4 or STM-1e unit in a worker slot to a SPIA-1E4/4B orSIA-1/4B unit. A SPIA-1E4/4B or SIA-1/4B unit in a worker slotcannot be protected by an older E4 or STM-1e unit in slot 4,even not when both units are running in the same mode.

Table 8-15 WaveStar ® ADM 16/1 DWDM access terminal STM-16 (OLS 1.6T, to be used withhigher order interfaces)

Circuit Pack (CP) Name Description Number Remark

Subracks

1 EFA 4 High-density subrack 1

Core circuit packs

3 SC

SC2

System Controller 1

5 CC-64/32

CC-64/32B

Cross-Connect CP 64 × 64 HO, 32 × 32 LO

7 PT-stnd Power and Timing CP 4.6 ppm 2 2

8 PT-str3 Power and Timing CP 0.37 ppm

Line-interface circuit packs

9 SI-L 16.1/1C SI-L16.1/1D

Long-haul 2.5 Gbit/s 1310 nm, L 16.1, ITU range

Configurations System planning and engineering

....................................................................................................................................................................................................................................

8 - 2 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 381: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 8-15 WaveStar ® ADM 16/1 DWDM access terminal STM-16 (OLS 1.6T, to be used withhigher order interfaces) (continued)

Circuit Pack (CP) Name Description Number Remark

10 SI-L 16.2/1C

SI-L 16.2/1D

Long-haul 2.5 Gbit/s 1550 nm, L 16.2, ITU range

13 SI-16EMLx/1 Interworking packs OLS 1.6T (80 differentwavelengths)

2 3

Boosters and pre-amplifier circuit packs

14a SI-EMLU16.2/1 EML 2.5 Gbit/s 1550 nm U 16.2

14b LPBA-U 16.2/3 Booster and Pre-Amplifier (160km)

14c LBA-V16.2/1 Booster (120km)

Optical tributaries

15 SA-0/12 Converter board STM-0

15a OI-0/6 Optical Interface STM-0 1310 nm

16 SI-S 4.1/1 Short Haul, STM-4 1310 nm 2

Optical / electrical tributaries

17 SPIA-1E4/4B 140 Mbit/s or STM-1 electrical or STM-1 optical 6 6

SIA-1/4B STM-1 electrical or STM-1 optical

17a OI-S 1.1/2 Optical Interface Short Haul STM-1 1310 nm 8

17b PB-1E4/PW/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s 2

17c PB-1E4/PP/ 2 Protect PB, 2 ch. for STM-1 and 140 Mbit/s 2

Electrical tributaries

18 PI-E1/63 63 × 2 Mbit/s, 75 Ω 4

18a PB-E1/75/32 Direct-through connect PB 75Ω, 32 ch.

18b PB-E1/P75/ 32 Protection PB 75Ω, 32 ch. 5

18c PB-E1/120/ 32 75 to 120Ω conversion PB, 32 ch.

18d PB-E1/ P120/32 75 to 120Ω conversion PB, with protection, 32 ch.

19 PI-E3DS3/ 6+6 6 × 45 Mbit/s and 6 × 34 Mbit/s

19a PI-E3DS3/ 12 12 × 34 Mbit/s or 45 Mbit/s switchable

20 PI-DS3/12 12 × 45 Mbit/s

19,20a

PB-E3DS3/6 Protection PB 34 / 45 Mbit/s, 6 ch.

Additional timing circuit packs

21 TI-DS2DS0/ 1 Timing Interface CP 64+8 kHz In/6312 kHz Out

22 TI-I 1.1DS0/ 1 Timing Interface CP 64+8 kHz In/155.52 MHz Out

Configurations System planning and engineering

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

8 - 2 9

Page 382: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Remarks:

1. If protection of the CC is not required, 1 × CC should beengineered.

2. If protection of the PT-stnd is not required, 1 × PT-stnd shouldbe engineered. If a stability of 0.37 ppm for 24 hour is required,the PT-str3 should be engineered.

3. Depending on the wavelength and the numerous of STM-16EML entrances.

4. If protection of the 2 Mbit/s interfaces is not required, noadditional PI-E1/ 63 should be engineered for protection.

5. If protection of the 2 Mbit/s interfaces is not required, no paddleboard has to be engineered. It should be d that if protection isrequired in future, it is advisable to install the direct-throughconnect paddle board 75Ω, 32 ch paddle board as this will easeinstallation practice in future. If 120Ω interfaces are needed,either 16 × PB-E1/120/32 (no 2 Mbit/s protection) or 16× PB-E1/P120/32 (2 Mbit/s protection) should be engineered

6. STM-1 electrical and E4 units can be equipment protected at thesame time by using a SPIA-1E4/4B in slot 4. The SPIA-1E4/4Bautomatically configures itself in the correct operation mode.Additionally in R4.0 it is possible to in-service upgrade an olderE4 or STM-1e unit in a worker slot to a SPIA-1E4/4B orSIA-1/4B unit. A SPIA-1E4/4B or SIA-1/4B unit in a worker slotcannot be protected by an older E4 or STM-1e unit in slot 4,even not when both units are running in the same mode.

Configurations System planning and engineering

....................................................................................................................................................................................................................................

8 - 3 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 383: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

9 Technical data

Overview....................................................................................................................................................................................................................................

Purpose This chapter contains the technical specifications of theWaveStar®

ADM 16/1 Multiplexer and Transport System.

ContentsOptical interfaces 9-3

Electrical interfaces 9-4

Optical connector interface 9-5

Optical source and detector 9-6

Optical safety 9-7

Optical power budgets 9-8

Power specification 9-13

Dimensions 9-15

System weight 9-16

Electrical connectors 9-17

Environmental specifications 9-18

General ITU-T recommendations 9-19

Mapping structure 9-20

Electrical interfaces 9-22

Operations system interfaces 9-23

Customer data interfaces 9-24

Ethernet interfaces 9-25

Timing and network synchronization 9-26

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 1

Page 384: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Transmission performance 9-27

Performance monitoring 9-28

Network element configurations 9-31

Operations, administrations, maintenance, andprotection

9-32

Network management 9-33

Bandwidth management 9-34

Protection and redundancy 9-35

Overhead bytes processing 9-37

Supervision and alarms 9-40

Overview Technical data

....................................................................................................................................................................................................................................

9 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 385: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Optical interfaces....................................................................................................................................................................................................................................

The optical interfaces of theWaveStar® ADM 16/1 have thefollowing optical outputs and line codes:

Table 9-1 Optical interfaces

STM-0 STM-1 STM-4 STM-16

Opticaloutput

51.84 Mbit/s 155.52 Mbit/s 622.08 Mbit/s 2.488 Gbit/s

Optical linecode

Scramblednon-return to zero,(NRZ)

Scramblednon-return to zero,(NRZ)

Scramblednon-return to zero,(NRZ)

Scrambled non-returnto zero, (NRZ)

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 3

Page 386: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Electrical interfaces....................................................................................................................................................................................................................................

The electrical interfaces of theWaveStar® ADM 16/1 have thefollowing technical specifications:

Table 9-2 Electrical interfaces

Nominal bitrate Line code Insertion loss Return loss

1.5 Mbit/s 1544 kbit/s AMI (G.703) acc. G.703 acc. G.703

2 Mbit/s 2048 kbit/s HDB3 (G.703) acc. G.703 acc. G.703

34 Mbit/s 34.368 Mbit/s HDB3 (G.703) acc. G.703 acc. G.703

45 Mbit/s 44.736 Mbit/s B3ZS (ANSIT1.102-1987).

acc. G.703 acc. G.703

140 Mbit/s 139.264 Mbit/s CMI (G.703) acc. G.703 acc. G.703

STM-1 155.520 Mbit/s CMI (G.703) acc. G.703 acc. G.703

The amplitude/shape of the DS1 output signal can be provisioned tomatch the cable between theWaveStar® ADM 16/1and the DDF, insuch a way that the pulse shape at the DDF, which can be up to 655feet away, meets the specification. Five signal levels can beprovisioned in the transmitter, covering cable lengths between 0-131,131-262, 262-393, 393-542 and 542-655 feet. The receiver has anautomatic line build-out capability to handle cable lengths between0-655 feet. These lengths assume 22 AWG ABAM type cable with anapproximate f transfer and an attenuation of 5.5 dB and a phaserotation of 30˚ at a frequency of 772 kHz.

The amplitude/shape of the DS3 output signal can be provisioned tomatch the cable between theWaveStar® ADM 16/1and the DDF, insuch a way that the pulse shape at the DDF, which can be up to 450feet away, meets the specification.Two signal levels can beprovisioned in the transmitter, covering cable lengths between 0-120and 120-450 feet. The receiver has an automatic line build-outcapability to handle cable lengths between 0-450 feet. These lengthsassume type 728 cable (Telcordia GR-139-CORE) with anapproximate f transfer and an attenuation of 5.7 dB and a phaserotation of 38˚ at a frequency of 22.368 MHz.

Technical data

....................................................................................................................................................................................................................................

9 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 387: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Optical connector interface....................................................................................................................................................................................................................................

All STM-4 optical packs are equipped with a universal built-outoptical connector type, allowing the connector type to FC/PC or SC tobe changed on-site depending on the customer needs.

All STM-16 optical packs, except for SI-16EML9xxx/1 andSI-EMLU16.2/1P which support an LC-connector, support theuniversal build-out optical connector type. This connector typesupports both FC/PC and SC optical connectors.

The STM-1 optical circuit packs do have a SC-connection with aconversion possibility to FC/PC.

The STM-0 does have a LC-connection with a conversion possibilityto FC/PC or SC.

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 5

Page 388: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Optical source and detector....................................................................................................................................................................................................................................

The optical sources and detectors of theWaveStar® ADM 16/1 havethe following technical specifications

Table 9-3 Technical specifications of the optical source and detector

Optical circuit pack type Laser type Optical detector Hazard level(IEC-60825-2)

STM-0 1310 nm FP (MLM) PIN 1

S-1.1 1310 nm FP (MLM) PIN 1

L-1.2 1550 nm DFB (SLM) PIN 1

S-4.1 1310 nm FP (MLM) PIN 1

L 4.2 1550 nm DFB (SLM) PIN 1

L-16.1 ITU 1310 nm DFB (SLM) APD 1

L-16.2/3 standard ITU 1550nm

DFB (SLM) APD 1

16 EMLx/1 (x from 9190 to9585)

EML (SLM) APD 1

U-16.2 1550 nm EML APD 3A

V-16.2 1550 nm DFB (SLM) APD 1M

MLM Multi longitudinal mode

SLM Single longitudinal mode

EML External modulated laser

DFB Distributed feedback laser (= SLM)

FP Fabry-Perot (= MLM)

APD Avalanche photodiode

Technical data

....................................................................................................................................................................................................................................

9 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 389: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Optical safety....................................................................................................................................................................................................................................

The system is classified and labelled as specified in IEC 60825-1 andIEC 60825-2 “Radiation safety of laser products equipment,classification, requirements and users guide”. All parts of theequipment are designed to operate and be capable of being maintainedwithout hazard to personnel from optical radiation.

The WaveStar® ADM 16/1 System includes an automatic powershutdown and restart (APSD) for the optical interworking pack with abooster/pre-amplifier facility to prevent hazard to personnel fromoptical radiation, as specified in ITU-T Recommendation G.664.

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 7

Page 390: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Optical power budgets....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 Multiplexer and Transport System isdesigned to meet the optical power budget specifications indicated inthe following tables. These specifications are compliant with G.707,G.957, G.958 and G.691. For special application and to avoidoverload if very short distances are being bridged, optical line buildouts (10 dB) are available at the send side (seeInstallation Guide).

Table 9-4 STM-0 / STM-1/STM-4

Application unit STM-0 S-1.1 S-4.1 L-1.2 L-4.2

Transmitter at reference point S:

Wavelengthrange

nm 1270-1360 1270-1360 1283-1345 1535-1565 1535-1565

-max dBm –11 –8 –8 0 2

-min dBm –17 –15 –15 –5 –3

minimumextinction ratio

dB 11 8.2 8.2 10 10

Optical Patch between S and R:

attenuationrange

dB 0-10 0-12 0-12 47027 45566

maximumdispersion

ps/nm N.A. 185 88 N.A. 2000

worst-casedispersionlimited sectionlength

km N.A. 35 22 Section is notdispersionlimited

Section is notdispersionlimited

Receiver at reference point R:

Minimumsensitivity(BER = 10–10)

dBm –28 –28 –28 –34 –28

Minimumoverload level

dBm –8 –8 –8 –10 –8

Maximumoptical pathpenalty

dB 1 1 1 1 1

Table 9-5 STM-16

Application unit SI-L 16.1/1C(1D) ITU SI-L 16.2/1C(1D) ITU

Transmitter at reference point: S

Wavelength range nm 1280-1335 1535-1565

Spectral characteristics

Maximum –20 dB width nm 1 <1

Technical data

....................................................................................................................................................................................................................................

9 - 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 391: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 9-5 STM-16 (continued)

Application unit SI-L 16.1/1C(1D) ITU SI-L 16.2/1C(1D) ITU

Minimum side modesuppression ratio

dB 30 30

Mean launched power:

- Max dBm +2 +2

- Min dBm –2 –2

Minimum extinction ratio dB 8.2 8.2

Optical patch between S and R:

Attenuation range (G.652)@BER = 10–10

dB 1024 11-24 (L16.2)

Attenuation range (G.653)@BER = 10–10

dB N.A. 11-25 (L16.3)

Maximum dispersion ps/nm 230 1800

Maximum return loss ofcable plant at S

dB 24 24

Maximum discretereflectance between S&R

dBm –27 –27

Worst-case dispersionlimited section length (G.652/ G.653 fiber)

km 53 G.652: 90 G.653: Section isnot dispersion limited.

Receiver at reference point R:

Minimum sensitivity (BER =10–10)

dBm –27 –28

Minimum overload level dBm –8 –8

Maximum optical pathpenalty (G.652/653)

dB 1 G.652: 2G.653: 1

Maximum reflectance at R dB –27 –27

All values are End Of Life (EOL)

Table 9-6 1000BASE-SX / 1000BASE-LX

Application unit 1000BASE-SX 1000BASE-LX

MHz.km 62.5 µmMMF 50 µmMMF 62.5 µmMMF 50

µmMMF

10

µmSMF

Modal bandwidth as measuredat 850 nm for SX, and at 1310nm for LX (minimum,overfilled launch)

160 200 400 500 500 400 n.a.

Transmitter at reference point TP2:

Wavelength range nm 860 770 1270 1355

Mean launched power

- max dBm 0 –3

Optical power budgets Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 9

Page 392: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 9-6 1000BASE-SX / 1000BASE-LX (continued)

Application unit 1000BASE-SX 1000BASE-LX

MHz.km 62.5 µmMMF 50 µmMMF 62.5 µmMMF 50

µmMMF

10

µmSMF

- min dBm –9.5 –11.5 –11.5 –11

Minimum extinction ratio dB 9 9

Optical path between TP2 and TP3:

Attenuation range dB 2.38 2.6 3.37 3.56 2.35 2.35 2.35 4.57

Operating distance m 220 275 500 550 550 550 550 5000

Maximum dispersion ps/nm n.a. n.a.

Worst-case dispersion limitedsection length

km n.a. n.a.

Receiver at reference point TP3:

Minimum sensitivity (BER =10–12)

dBm –17 –19

Minimum overload level dBm 0 –3

Maximum optical path penalty dB 4.27 4.29 4.07 3.57 3.48 5.08 3.96 3.27

Table 9-7 1000BASE-ZX

EOL (end oflife)requirements

BOL (begin oflife)requirements

Bit rate 1.25Gb/s+/-100ppm

Operating wavelength range

[Non Peltier cooled]

1500-1580 nm

Transmitter at reference point TP2

Source type SLM

Spectral width underoperating conditions (max)

1.0 nm (20dBdown)

Side mode suppression ratio(min)

30dB

Mean launched power (max) +5 dBm +4 dBm

Mean launched power (min) 0 dBm +1 dBm

Extinction ratio (min) 9.0 dB 9.5 dB

Mask of the eye diagram ofthe optical

Optical power budgets Technical data

....................................................................................................................................................................................................................................

9 - 1 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 393: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 9-7 1000BASE-ZX (continued)

EOL (end oflife)requirements

BOL (begin oflife)requirements

transmit signal see IEEE802.3

Transmitter jitter (max) 345 ps

Optical path between points TP2 and TP3

Optical return loss of thecable plant at point TP2

including the opticalconnector

20 dB

Maximum dispersion 1600 ps/nm

Attenuation range 5 - 21 dB

Optical path penalty (max) 1.5 dB

Receiver at reference point TP3

Minimum sensitivity -22.5 dBm -23.7 dBm

Overload 0 dBm

Optical return loss of thereceiver

12 dB

Jitter (max) 408ps

Table 9-8 Booster, booster/pre-amplifier and OLS 1.6T

APPLICATION unit SI-EMLU 16.2/1+

LBPA U-16.2/1

SI-EMLU 16.2/1+ LBA

V-16.2/1

SI-16EML x/1

Transmitter at reference point S:

Wavelength range nm 1552.52 1535-1560 1530-1565

Mean launched power:

- max dBm +15 + 15 –3.8 (EOL)-4.6(BOL)

- min dBm +12 +12 –6.2 (EOL)-5.4(BOL)

Minimum extinction ratio dB 8.2 8.2 13

Optical patch between S and R:

Attenuation range (G.652)@BER = 10–12

dB 33 44 23 36 N.A.

Optical power budgets Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 1 1

Page 394: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 9-8 Booster, booster/pre-amplifier and OLS 1.6T (continued)

APPLICATION unit SI-EMLU 16.2/1+

LBPA U-16.2/1

SI-EMLU 16.2/1+ LBA

V-16.2/1

SI-16EML x/1

Attenuation range (G.653)@BER = 10–12

dB 33 45 23 37 N.A.

Maximum dispersion ps/nm 3200 2400 9600

Worst-case dispersionlimited section length

km 160 120 N.A.

Receiver at reference point R:

Minimum sensitivity (BER= 10–12)

dBm –34 –26 N.A.

Minimum overload level dBm –18 –8 N.A.

Maximum optical pathpenalty

dB 2/1 2/1 2

Minimum optical signal tonoise ratio (OSNR)

N.A. N.A. 12.5 (over –24 to–10 dBm inputpower)

Optical power budgets Technical data

....................................................................................................................................................................................................................................

9 - 1 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 395: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Power specification....................................................................................................................................................................................................................................

Table 9-9 Voltage range

Voltage range, all components –48 to –60 V Battery voltages, CEPT T/TR02-02 (–40.5 Vminimum, –72 V maximum)

Power feeders Two power feeders

Table 9-10 Power dissipation

Configuration Power Dissipation

WaveStar® ADM 16/1 450 600 Watt

Table 9-11 Power consumption

Unit Name Unit type Consumed Power (worst case) (W)

General units

Power and Timing ±4.6 ppm PT-stnd 15

Power and Timing ±0.37 ppm PT-str3 16

System Controller SC 31

SC2 26

Cross-connect 64/32 CC-64/32 57.6

CC-64/32B 45

Fixed cross-connect CC-fixed 2.15

Optical booster and pre-amplifier

Optical booster and pre-amplifier LBPA-U 16.2/1 19.2

Optical booster LBA-V 16.2/1 11.2

Interworking pack for LBPA and LBAapplication

SI-EMLU 16.2/1 37.6

Optical interfaces

STM-16 LH, 1310 nm SI-L 16.1/1C 36.4

STM-16 LH, 1310 nm SI-L 16.1/1D 22

STM-16 LH, 1550 nm SI-L 16.2/1C 36.4

STM-16 LH, 1550 nm SI-L 16.2/1D 22

STM-16 LH, 1550 nm SI-L 16.2/1+4dB 36.4

STM-16 LH, 1550 nm SI-L 16.3/1B 22

STM- 4 LH, 1550 nm SI-L 4.2/1 8.5

STM- 4 SH, 1310 nm SI-S 4.1/1 8.5

STM-16 interworking with the OLS80G

SI-EML80.x/1 39.6

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 1 3

Page 396: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 9-11 Power consumption (continued)

Unit Name Unit type Consumed Power (worst case) (W)

STM-16 interworking with the OLS1.6T

SI-16EMLx/1 39.6

Gigabit Ethernet, optical interface IP-GE/2 41.9

Optical paddle boards

STM-1, optical interface OI-L1.2/2 2.36

STM-1, optical interface OI-S1.1/2 SC 3.5

STM-0, optical interface, SH 1310nm OI-0/6 1.5

Electrical interfaces

STM-1e/140 Mbit/s electrical SPIA-1E4/4B 22

STM-0/AU-3 to TU-3 SA-0/12 41.7

STM-1 SIA-1/4B 22

2 Mbit/s PI-E1/63 24

34/45 Mbit/s PI-E3DS3/6+6 41.8

45 Mbit/s PI-DS3/12 42.3

140 Mbit/s PI-E4/4 21.2

10/100 Mbit/s BASE-T IP-LAN/8 16.7

10/100 Mbit/s BASE-T IP-LAN 8 Tlan+ 42.4

Miscellaneous

Fans - 15

Power specification Technical data

....................................................................................................................................................................................................................................

9 - 1 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 397: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Dimensions....................................................................................................................................................................................................................................

The subracks for theWaveStar® ADM 16/1 Multiplexer and TransportSystem are compliant with the engineering requirements for subracksmounted in miscellaneous racks and cabinets described in ETSI 300119-4 for wide racks (600 × 600 mm). TheWaveStar® ADM 16/1Multiplexer and Transport System is housed in a 500 mm wideconstruction (required rack depth 600 mm).

Based on the above requirements, theWaveStar® ADM 16/1 outsidesubrack dimensions are:

Subrack type D × W × H

WaveStar® ADM 16/1 High Density EFA4 545 × 500 × 750 mm

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 1 5

Page 398: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

System weight....................................................................................................................................................................................................................................

System configuration Weight

WaveStar® ADM 16/1 max. configuration less then 70 kg (including internal cables)

Technical data

....................................................................................................................................................................................................................................

9 - 1 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 399: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Electrical connectors....................................................................................................................................................................................................................................

• All transmission interfaces are connected to the backplaneMETRAL™ connector system

• All non-transmission interfaces are connected via Sub-D typeconnectors via the integrated interconnection Panel (ICP).

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 1 7

Page 400: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Environmental specifications....................................................................................................................................................................................................................................

Table 9-12 Climatic conditions

Climatic Conditions Temperature range Humidity ETSI Class

Environment –5 +45 °C 3 90% (NC) 3.1e

Storage –25 +55 °C up to 100% (NC) 1.2

Transport –40 +70 °C up to 95% (NC) 2.3

NC: Non-condensing

The WaveStar® ADM 16/1 Multiplexer and Transport Systemmounted in a 2000 mm rack comply with earthquake proof: zone 4(modified Mercalli scale > 9) requirements as per IEC721-2-6.

The WaveStar® ADM 16/1 Multiplexer and Transport System fulfillsthe requirements as specified in ETSI 300 386-1; PublicTelecommunication Network Equipment. EMC/ESD requirements asalso indicated in the table below.

Table 9-13 Environmental conditions

Radiated emission EN 55 022 Class B

Conducted emission: AC power EN 55 022 Class B

DC power EN 55 022/ETS 300 386-1

Telecom ports CISPR 22 Class B

Electrostatic discharge: IEC 1000-4-2 level 4

EN 61000-4-2 level 4

Radiated immunity: IEC 1000-4-3 level 3

Electrical fast transient: AC power IEC 1000-4-4 level 3

DC power IEC 1000-4-4 level 3

Telecom ports IEC 1000-4-4 level 3

Surges: AC power IEC 1000-4-5 level 4

Indoor telecom port ETS 300 386-1

Continuous wave: AC power IEC 1000-4-6 level 2

DC power IEC 1000-4-6 level 2

Telecom ports IEC 1000-4-6 level 2

Technical data

....................................................................................................................................................................................................................................

9 - 1 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 401: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

General ITU-T recommendations....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 is in compliance with the

• General ITU-T Recommendations: G.707

• Equipment Recommendations: G.781, G.782, G.783, G.784,G.813

• Physical interface Recommendations: G.957 and G.691 foroptical and G.703 for electrical interfaces.

• Performance requirements: G.823, G.825, G.826

• Optical safety requirements: G.664

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 1 9

Page 402: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Mapping structure....................................................................................................................................................................................................................................

The following mapping structures are supported:

Between cross-connect and line/tributary interface, SDH mappings:

• AU-4-4c ↔ AUG4 ↔ AUG16 ↔ STM-16

• AU-4 ↔ AUG1 ↔ AUG4 ↔ AUG16 ↔ STM-16

• AU-4-4c ↔ AUG4 ↔ STM-4

• AU-4 ↔ AUG1 ↔ AUG4 ↔ STM-4

• AU-4 ↔ AUG1 ↔ STM-1

• AU-4 ↔ VC-4 ↔ E4

• AU-4 ↔ VC-4 ↔ TUG-3 ↔ TU-3 ↔ VC-3 ↔ E3/DS3

• AU-4 ↔ VC-4 ↔ TUG-3 ↔ TUG-2 ↔ TU-12 ↔ VC-12↔ E1

• AU-4 ↔ VC-4 ↔ TUG-3 ↔ TUG-2 ↔ TU-12 ↔ VC-11↔ DS1

Between cross-connect and tributary interface, with conversion fromTU-3 to AU-3:

• AU-4 ↔ VC-4 ↔ TUG-3 ↔ TU-3 ↔ VC-3 ↔ AU-3↔ STM-4 (OC-12)

• AU-4 ↔ VC-4 ↔ TUG-3 ↔ TU-3 ↔ VC-3 ↔ AU-3↔ STM-1 (OC-3)

• AU-4 ↔ VC-4 ↔ TUG-3 ↔ TU-3 ↔ VC-3 ↔ AU-3↔ STM-0

Between cross-connect and tributary interface, Ethernet mapping onLJB458TransLAN® unit:

• AU-4 ↔ VC-4 ↔ TUG-3 ↔ TUG-2 ↔ n × TU-12 ↔ n× VC-12 ↔ n × E1 ↔ ML PPP↔ Ethernet

Between cross-connect and tributary interface, Ethernet mapping onLJB459TransLAN® unit:

• AU-4 ↔ VC-4 ↔ VC-3-Xv ↔ EOS↔ Ethernet

• AU-4 ↔ VC-4 ↔ TUG-3 ↔ VC-12-Xv ↔ Ethernet

Technical data

....................................................................................................................................................................................................................................

9 - 2 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 403: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Between cross-connect and tributary interface, GbE Ethernet mappingon LJB460 GbE unit:

• WAN ↔ T1X1.5/99-268 (EOS) protocol↔ VC-3-gv ↔ g× TU-3 ↔ VC-4 (g = 1, 2) or

• WAN ↔ T1X1.5/2001-024r4 (ITU-T G.7041, GFP) protocol↔ C3-Xc ↔ VC-3-Xv ↔ X × VC-3 (X= 1, 2)

• 1000BaseX↔ T1X1.5/2001-024r4 (ITU-T G.7041, GFP)protocol↔ C4-Xc ↔ VC-4-Xv ↔ X × VC-4 (X = 1, , 4)

Support of different size (ss)-bit support on STM-1/4/16 interfaces(new standards):

• In the source direction, the transmitted ss-bits can be provisionedin “10” (SDH mode, default) or “00” (SONET mode)

• In the sink direction the incoming ss bits are ignored.

Mapping structure Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 2 1

Page 404: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Electrical interfaces....................................................................................................................................................................................................................................

The following electrical interfaces are available:

• 1.5 Mbit/s asynchronous/byte synchronous, 63 interfaces percircuit pack

• 2 Mbit/s asynchronous/byte synchronous, 63 interfaces per circuitpack

• 34 and 45 Mbit/s asynchronous, 6 interfaces each per circuit pack

• 45 Mbit/s asynchronous, 12 interfaces per circuit pack

• 140 Mbit/s asynchronous, 4 interfaces per circuit pack

• STM-1 electrical intra-station, 4 interfaces per circuit pack.

• Ethernet/LAN, 8 interfaces per circuit pack

Technical data

....................................................................................................................................................................................................................................

9 - 2 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 405: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Operations system interfaces....................................................................................................................................................................................................................................

Office alarms

The steady state current for office alarms connections should notexceed 0.9 A at 60 V or 1.8 A at 30 V. The maximum transientcurrents (20 msec duration) during initial contact closure should notexceed 9 A at 60 V or 18 A at 30 V.

Miscellaneous discrete inputs

Any external equipment to be monitored must provide the electricalequivalent of a contact closure across the corresponding pairs. Thecontact closure must be capable of passing at least 10 mA of drivecurrent, voltage specifications are CMOS compatible. There are eightmiscellaneous discrete input points for allWaveStar® ADM 16/1configurations.

Miscellaneous discrete outputs

All WaveStar® ADM 16/1 configurations provide four miscellaneousdiscrete output: hard contacts, contact rating 60V/0.5 A.

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 2 3

Page 406: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Customer data interfaces....................................................................................................................................................................................................................................

The system supports 4 interfaces for customer access to user bytes, 2interfaces are according G.703, 2 interfaces are according V.11. Theuser can select six of the following 64 kbit/s OH-channels to berouted to the connector points:

• Engineering order wire E1 or E2, 64 kbit/sThe WaveStar® ADM 16/1 offers external access to the E1 or E2bytes for all STM-1, STM-4 and STM-16 interfaces. Access isvia a connector on the interconnection panel.

• User channels F1, 64 kbit/sThe WaveStar® ADM 16/1 offers external access to the sectionuser channel F1 byte for all STM-1, STM-4 and STM-16interfaces. Access is via a connector on the interconnection panel.

• National Use bytes, RS-NU and MS-NU, 64 kbit/sThe WaveStar® ADM 16/1 offers external access to the sectionuser channel RS-NU and MS-NU byte of STM-1#1 for allSTM-1, STM-4 and STM-16 interfaces. Access is via a connectoron the interconnection panel.

Note: RS-NU and MS-NU access on STM-16 requires the newSTM-16 units LJB435-LJB436 (SI-L16.1/1D and SI-L16.2/1D).

Technical data

....................................................................................................................................................................................................................................

9 - 2 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 407: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ethernet interfaces....................................................................................................................................................................................................................................

• Electrical 10/100BASE-T Ethernet interfaces according to IEEE802.3, 2000 edition with configurable auto-negotiation function.

• 1000BASE-SX optical interfaces or 1000BASE-LX opticalinterfaces according IEEE 802.3 Clause 38

• Multilink PPP on LJB458 unit according to RFC 1990.

• EOS mapping on LJB459 according to T1X1.5/99-268 protocol.

• LAN promiscuous mode according to RFC 1638.

• Ethernet bridging according to IEEE 802.1d (1998 Edition)

• VPN/Customer VLAN tagging or IEEE 802.1Q/IEEE 802.1adcompliant VLAN Tagging

• GARP VLAN Registration Protocol (GVRP) according to IEEE802.1Q Clause 11

• IEEE 802.1p QoS

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 2 5

Page 408: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Timing and network synchronization....................................................................................................................................................................................................................................

Table 9-14 Timing modes

System Free-running Holdover mode Locked mode withreference

WaveStar® ADM 16/1,all configurations

÷ ÷ one of the externalsync. inputs

one of the 2 Mbit/stributary inputs

one of the STM-Ninputs

Two types of timing packs are available:

• Built-in oscillator standard, accuracy 4.6 ppm according G.813option 1

• Built-in oscillator stratum-3, accuracy 4.6 ppm according G.813option 1, stability 0.37 ppm first 24 hours.

Support of the ETSI synchronization status message algorithms.

Two programmable input/output station clock interfaces: 2048 kHz(G703.10) or 2048 kbit/s (G703.6, 75 or 120Ω)

Timing Reference

• Timing generator (4.6 ppm or 0.37 ppm)

• Phase and frequency continuity at timing source switch-over

• Automatic timing reference protection switching

• Timing generator with hold-over

Pointer Justification Event Counter

The following parameters are available to estimate the synchronizationperformance:

• PJE-: Count of negative pointer justifications

• PJE+: Count of positive pointer justifications

Both counters are present on one outgoing AU-4 pointer generationcircuit per outgoing STM-N.

Technical data

....................................................................................................................................................................................................................................

9 - 2 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 409: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Transmission performance....................................................................................................................................................................................................................................

• Jitter on STM-N interfaces:G.813/G.825

• Jitter on PDH interfaces:G.823/G.783

• Error performance:G.826

• Performance monitoring:G.784/G.826

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 2 7

Page 410: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Performance monitoring....................................................................................................................................................................................................................................

Performance monitoringtermination points

The WaveStar® ADM 16/1 has Performance Monitoring capabilities atthe following termination points. These points depend on the actualhardware configuration of theWaveStar® ADM 16/1.

Table 9-15 Performance monitoring termination points

Termination points Equipment

E1ElectricalPPITTP for each of the 2 Mbit/s (E1) ports)

VC-12 TTP/CTP for each of the 2 Mbit/s ports

VC-3 TTP/CTP for each of the 34 or 45 Mbit/s ports

VC-4 TTP/CTP for each of the 140 Mbit/s ports and terminated VC-4s in the crossconnects

RS-16 for each of the 2.488 Gbit/s ports

MS-16 for each of the 2.488 Gbit/s ports

MS-4 for each of the 622 Mbit/s ports

MS-1 for each of the 155 Mbit/s ports.

Performance monitoring on VC-12 CTPs and VC-3 CTPs requires theCC-64/32B (LJB434) cross-connect unit.

Performance monitoringfeatures

The following number of bins are available for theWaveStar® ADM16/1:

Table 9-16 Performance monitoring bins

Interval History bins Total History bin storage time

15 minute 16 4 hours

24 hour 1 1 day

A threshold can be set for these counts.

The following features are also available for performance monitoring:

• Unavailable period registering

• Severity settings for alarms on each termination point instance.

In releases up to Ruby Release 250 performance monitoring points aresupported.

With Ruby software, Ruby controller hardware (LJB457B) and RubyCross-connect-64/32 (LJB434) 600 performance monitor points aresupported simultaneously.

Technical data

....................................................................................................................................................................................................................................

9 - 2 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 411: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

With Pearl software, Ruby controller hardware (LJB457B) and RubyCross-connect-64/32 (LJB434) 1200 performance monitor points aresupported simultaneously.

2 Mbit/s non-intrusive monitoring, AIS detection

• It is possible to monitor the CRC-4, E-bit and A-bit informationin TS0 of any 2 Mbit/s in both directions for performancemonitoring purposes for G.704 structured 2 Mbit/s tributaries.

Performance Monitoringfor LAN ports

On the VC-3/VC-12 termination points that are connected to a WANport, the “normal” performance monitoring can be activated. The samecounters that apply for VC-3/VC-12TPs on any other port also applyto the VC-3/VC-12 TP’s on a WAN port.

Apart from this standard SDH PM, a limited amount of counters thatare dedicated to LAN/WAN ports are defined. Activation of thesecounters can be established by setting the LAN port mode tomonitored, selecting a LAN port or WAN port as active PM point,and setting the PM point type to LAN or WAN.

The supported dedicated parameters are:

• CbS (total number of bytes sent)

• CbR (total number of bytes received)

• pDe (packets in error dropped)

Note that CbS and CbR are rather traffic monitoring counters thanperformance monitoring counters, as they give insight in the trafficload in all places in the network. pDe is a real performancemonitoring counter as it gives an indication about the performance ofthe network. Only unidirectional PM is supported for theseparameters. SeeFigure 9-1, “Performance monitoring counters” (9-30)for the location of the measurements. Note that because of thedifference in units, bytes versus packets, the counters cannot becorrelated with each other. Also the counter for dropped packets

Performance monitoring Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 2 9

Page 412: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

considers only packets dropped due to errors, and does not includepackets dropped due to congestion.

Performance Monitoring onLAN connections (Gigabit

Ethernet ports)

It is possible to monitor byte and packet related performanceparameters on any external Ethernet port and any internal port linkedwith VC-3/4-Xv channels. The following counters are supported foreach port:

• Outgoing number of bytes

• Incoming number of bytes

• Number of incoming packets dropped

Accumulation of counts in 15 min and 24 hour bins can be selectedper port. Recent bins are stored: 16 recent 15 min bins and 1 recent24 hours bin. Thresholding (TR/RTR) on counts of dropped incomingpackets can be enabled and configured per port.

Figure 9-1 Performance monitoring counters

Performance monitoring Technical data

....................................................................................................................................................................................................................................

9 - 3 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 413: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Network element configurations....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 system can be configured in the followingways:

• STM-16 0x1 and 1+1 End Terminal

• STM-162-fiber Add/Drop Terminal

• STM-160:1 or 0:2 Terminal

• Local cross-connect

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 3 1

Page 414: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Operations, administrations, maintenance, and protection....................................................................................................................................................................................................................................

• Installation self test

• Auto recovery after input power failure

• Local operations and maintenance via faceplate LEDs, buttons onthe SC, user panel, F-interfaces

• Centralized operations and maintenance via Q-interface

• Software downloading via Q and F-interfaces, DCC link

• Alarm categories for indication of alarm severity and stationalarm interface (9 ×)

• Local workstation (ITM-CIT)

• 8 × Miscellaneous discrete inputs and 4 outputs.

Technical data

....................................................................................................................................................................................................................................

9 - 3 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 415: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Network management....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 can be managed with the followingsystems:

• Fully manageable byNavis® Optical Management System(OMS)

• Local workstation (ITM-CIT) via J45 connections, V.10 (RS-232compatible)/F-interface

• Access to ECCs via in-station Q-LAN interface,G.773-CLNS1/10-Base-T 10BASE-T: Twisted Pair Ethernet and10-Base-2 10BASE-2: thin Ethernet or CheaperNet (coax cable)Interfaces

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 3 3

Page 416: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Bandwidth management....................................................................................................................................................................................................................................

• System capacity: 504 × 1.5 Mbit/s, 504 × 2 Mbit/s, 48 × 34Mbit/s, 96 × 45 Mbit/s, 64 × 10/100Base-T LAN, 18 × GbE, 96× STM-0, 32 × 140 Mbit/s, 32 × STM-1 or 8 × STM-4

• Complete VC-4 cross-connecting

• Bi-directional cross-connecting

• Higher Order and lower order broadcast functionality

• Protection access on MS-SPRing

• Higher Order cross-connect size 64 × 64 VC-4

• Lower Order cross-connect ranges up to 32 × 32 equivalents,that is 2016 × 2016 VC-12s or 96 × 96 VC-3s.

Technical data

....................................................................................................................................................................................................................................

9 - 3 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 417: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Protection and redundancy....................................................................................................................................................................................................................................

• Tributary level redundancy:

– 1: N equipment protection on 1.5 and 2 Mbit/s interfacecircuit packs (Nmax = 8)

– 1+1 equipment protection on 34/45 Mbit/s Interface circuitpacks

– 1:N equipment protection on 140 Mbit/s and STM1einterface circuit packs (Nmax = 4)

– 1+1 equipment protection on cross-connect circuit pack andpower and timing circuit pack)

• Non- revertive SNCP/N protection on VC-12/VC-3/VC-4 levelaccording to G.841/Clause 8.

• Programmable hold-off times

• STM-0 optical interface circuit packs support 1+1 MSP accordingto G.841 annex B.

• STM-1 and STM-4 optical interface circuit packs support 1+1MSP according to G.841 annex B, G.841 Clause 7.1/ETS300417-3-1, ANSI T1.105 and Telcordia GR-253-CORE.

• STM-16 optical interface circuit packs support 1+1 MSPaccording to G.841/Clause 7.1/ETS 300417-3-1.

• MS-SPRing in two fiber ring add/drop applications

• Selective MS-SPRing. In 2-fiber add/drop ring applications, theVC-4(-4c)’s in the ring can be protected by the MS-SPRingalgorithm according to G.841 and ETS 300417. The user has theoption to determine for each VC-4(-4c) individually, whether ornot it participates in the MS-SPRing scheme. If an individualVC-4(-4c) does not participate then it can be either VC-4(-4c)SNC protected or not protected at all.

• Dual Node Interworking:

– with drop and continue between SNCP and MS-SPRing ontwo nodes

– with drop and continue between two MS-SPRings

– to support VC-4 concatenation

• Maximum of 50 msec switching time for all protectionmechanisms mentioned above

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 3 5

Page 418: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

• Rapid Spanning Tree Protocol according IEEE 802.1w/D10

• LCAS for Ethernet (1000BASE-X “lite”): The implementation isbase on Nortel/Lucent contribution to T1X1.5/2000-199r1 (T1X1T1.105 Section 7.3.4).

Protection and redundancy Technical data

....................................................................................................................................................................................................................................

9 - 3 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 419: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Overhead bytes processing....................................................................................................................................................................................................................................

Regenerator sectionoverhead byte usage

Table 9-17 RSOH byte usage for STM-0 and STM-1

RSOH bytes Function STM-0 opticalinter-station

STM-0 opticalintra-station

STM-1 opticalinter-station

STM-1electricalintra-station

A1, A2 Framing X X X X

J0 Traceidentifier byte

X X X X

Z0 Spare bytes,for futureinternationalstandardization

B1 BIP-8 on RS(transmit only)

X X X X

D1-D3 Datacommunicationchannel (DCC)

X X X X

E1 # OW channel X X

F1 # User channel X X

Table 9-18 RSOH byte usage for STM-4 and STM-16

RSOH bytes Function STM-4 STM-16

A1, A2 Framing X X

J0 Trace identifier byte X X

Z0 Spare bytes, for futureinternational standardization

X X

B1 BIP-8 on RS (transmit only) X X

E1 # OW channel X X

F1 # User channel X X

D1-D3 Data communication channel(DCC)

X X

RS-NU (STM-1#1) National usage X X

“X”: Supported

Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 3 7

Page 420: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Multiplex section overheadbyte usage

Table 9-19 MSOH byte usage for STM-0 and STM-1

MSOHbytes

Function STM-0opticalinter-station

STM-0opticalintra-station

STM-1opticalinter-station

STM-1electricalintra-station

B2 BIP-8 (STM-0)/ BIP-24(STM-1) on MS

X X X X

K1, K2(bits 1-5)

Automatic protectionswitch (APS) channel

X X X X

K2 (bits6-8)

MS AIS/RDI Indicator X X X X

D4-D12 Data communicationchannel (DCC)

X X X X

S1 (bits5-8)

Synchronization statusmessage

X X X X

M1 REI (remote errorindication) byte, transmitonly

X X X X

E2 # Order wire channel X X

MSOH byte usage for STM-4 and STM-16

MSOH bytes Function STM-4 STM-16

B2 BIP-N×24 on MS X X

K1, K2(bits 1-5) Automatic protection switch X X

K2(bits 6-8) MS AIS/RDI Indicator X X

D4-D12 Data communication channel(DCC)

X X

S1 (bits 5-8) Synchronization status message X X

M1 REI (remote error indication)byte, transmit only

X X

E2 # Order wire channel X X

MS-NU (STM-1#1) National usage X X

“X”: Supported

Overhead bytes processing Technical data

....................................................................................................................................................................................................................................

9 - 3 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 421: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Path Overhead BytesVC-3/4/4-4c

VC-3/4/4-4c POH Byte Function 140 Mbit/s Unit CCU

J1 Path trace identifier byte X X

B3 BIP-8 X X

C2 Signal label X X

G1 REI/RDI (transmit only) X X

F2 User channel X X

H4 Multiframe indicator X X

F3 As F2 Fixed to 0 Fixed to 0

K3 VC trail protection Fixed to 0 Fixed to 0

N1 Tandem connection OH Fixed to 0 Fixed to 0

X = Supported

Path Overhead BytesVC-12

VC-12 POH Byte Function 2 Mbit/s unit

V5 (bit1, 2) BIP-2 X

V5 (bit 3) REI (transmit only) X

V5 (bit 4) Fixed to 0

V5 (bit 5, 6, 7) Signal label X

V5 (bit 8) RDI (transmit only) X

J2 Path trace X

N2 Network operator byte Fixed to 0

K4 Fixed to 0

“X”: Supported

Overhead bytes processing Technical data

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

9 - 3 9

Page 422: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Supervision and alarms....................................................................................................................................................................................................................................

Plug-in unit indication

• LED continuously on, diagnostic error

• LED flashing, transmission signal error

User panel

• LED indicators (Power, Prompt alarm, Deferred alarm, Infoalarm, Abnormal, Suppressed (alarm cut-off), Station alarmdisconnected, use CIT)

• Push buttons (Suppress (alarm cut-off), Disconnect stationalarms)

• Miscellaneous discrete input/outputs

– 8 inputs

– 4 outputs

• CIT connector F-interfaces V10/RS232

Access to embedded datacommunication channels

In-station Q-LAN interface, 10-Base-T and 10-Base-2.

Technical data

....................................................................................................................................................................................................................................

9 - 4 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 423: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

10 Quality and reliability

Overview....................................................................................................................................................................................................................................

Purpose This chapter presents Lucent Technologies’ quality policy anddescribes the reliability of theWaveStar® ADM 16/1 Multiplexer andTransport system.

ContentsLucent Technologies’ quality policy 10-2

Environmental aspects 10-3

Reliability program 10-5

Reliability specifications 10-6

Maintainability specification 10-10

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 0 - 1

Page 424: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Lucent Technologies’ quality policy....................................................................................................................................................................................................................................

Introduction For Lucent Technologies, quality improvement has long been avehicle to improve customer satisfaction. For many years, LucentTechnologies’ quality programs have been focused on improvingproducts and services. Total Quality programs and benchmarking areimportant tools in our continuous improvement journey.

As ISO-9000 is a global standard for quality management andassurance, Lucent Technologies wants to use ISO-9000 certification todemonstrate to its customers the company’s commitment to producingthe best quality products and services. We believe that ISO-9000registration as an independent assessment of the company’s qualitysystem is particularly useful to demonstrate that commitment toquality. In line with this policy, all major transmission facilities in theUSA and Europe are ISO-9000 certified.

Policy In line with above, Lucent Technologies’ policy statement in thisrespect is as follows.

Quality excellence is the foundation for the management of ourbusiness and the keystone of our goal of customer satisfaction. It is,therefore, our policy to:

• Consistently provide products and services that meet the qualityexpectations of our customers

• Actively pursue ever-improving quality through programs thatenable each employee to do his or her job right the first time.

Summary This Lucent Technologies Quality Policy guided the development ofthe WaveStar® ADM 16/1 Multiplexer and Transport system and willcontinue to affect the product throughout its lifetime.

Quality and reliability

....................................................................................................................................................................................................................................

1 0 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 425: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Environmental aspects....................................................................................................................................................................................................................................

Introduction Lucent Technologies has elected to move forward with ISO 14001 forenvironmental management systems for its operations and facilities. Infact, as part of our environmental, health, and safety goals, we havecommitted to have in place EH&S management systems-based onrecognized standards such as ISO 14001-for at least 95% of ourproducts, services, operations and facilities by the year 2000.

At the end of year 1998, 23 Lucent facilities, operations, and serviceshave been ISO 14001 certified by third party auditors. The two opticalnetworking group (the business unit that makes theWaveStar® ADM16/1 Product) manufacturing facilities, has already received ISO14001 certification, in September 1998.

Lucent’s environmental commitment is demonstrated through itsstructure of environmental and health and safety personnel throughoutall levels of the company. A company officer supports the setting ofcorporate goals and policies, and a Global Environmental Health andSafety vice president oversees environmental aspects for operationsworldwide. In addition, each of the business units (including theoptical networking group, the unit that manufactures theWaveStar®

Product) has its own responsible environment and safety officer.Finally, each facility has environmental managers who are responsiblefor compliance and the implementation of environmental managementsystems such as ISO 14001.

Corporate environmentalprotection

Lucent Technologies has developed several effective systems forcorporate environmental protection. In fact, Lucent’s environmental,health, and safety goals 2000 include having in place EH&Smanagement systems-based on recognized standards-for at least 95%of our products, services, operations, and facilities by the year 2000.The goals for the year 2000 are:

1. Deployment of environmental management systems for at least95% of our products, services, operations and facilities by theyear 2000.

2. Deployment of design for environment criteria for all businessgroups. As of year-end 1997.

3. Improvement of energy efficiency to avoid the emission of atleast 135.000 metric tons of greenhouse gases by the year 2000.As of year-end 1997 110.553 metric tons of carbon dioxide hasbeen avoided.

Quality and reliability

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 0 - 3

Page 426: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

EH&S worldwide standards In addition, the Lucent Technologies EH&S worldwide standards weredeployed in 1997, including:

1. Banned substances for products; dyes, pigments and stabilizers;packaging; maintenance and repair of products and productionequipment; facilities and operations. A list of banned substancesis available on request);

2. Chemical management;

3. Ozone depleting substances;

4. Water and wastewater management;

5. Hazardous waste and contaminated scrap;

6. Transportation of hazardous materials and wastes; and real estatetransactions.

Environmental aspects Quality and reliability

....................................................................................................................................................................................................................................

1 0 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 427: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Reliability program....................................................................................................................................................................................................................................

Reliability is a key ingredient of the product life cycle, beginning atthe earliest planning stage. Major occurrences at the start of theproject involved system reliability modeling.

During the design and development stage, reliability predictions,qualification and selection of components, definition of qualityassurance audit standards and prototyping of critical system areasensured built-in reliability.

During manufacturing and field deployment, techniques such aspre-manufacturing, qualification, production quality tracking, burn-intests, failure mode analysis and feedback and correction furtherenhance the ongoing reliability of theWaveStar® ADM 16/1Multiplexer and Transport system.

Quality and reliability

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 0 - 5

Page 428: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Reliability specifications....................................................................................................................................................................................................................................

Introduction The WaveStar® ADM 16/1 provides various hardware redundancy andprotective switching mechanisms where necessary to support highservice availability.

Redundancy andprotective switching

The WaveStar® ADM 16/1 supports the principle that protectiveswitching options should be available for all units and busses thatcould lead to service degradation when a failure occurs. Therefore, thesystem is divided into blocks, which allow for separate protectionswitching.

The WaveStar® ADM 16/1 provides protection switching options forthe following units:

Table 10-1 Protection switching options

Unit Protection switching plan

CC-64/16 1+1, non-revertive

CC-64/32 1+1, non-revertive

PT-stnd 1+1, non-revertive

PT-str3 1+1, non-revertive

PI-DS1/63 1+n, n = 8 at maximum, revertive

PI-E1/63 1+n, n = 8 at maximum, revertive

PI-DS3/12 1+1, revertive

PI-E3DS3/6+6 1+1, revertive

SPIA-1E4/4B 1:n, n = 4 at maximum, revertive

SIA-1/4B 1:n, n = 4 at maximum, revertive

Reliability and serviceavailability

The system has a minimal lifetime of 15 years. The reliability of thesystem can be characterized by the mean time between failures(MTBF is in years). For theWaveStar® ADM 16/1 the MTBF is 2.5years.

To guarantee service availability a variety of traffic protectionmechanisms are supported by theWaveStar® ADM 16/1:

• Path protection or SNC/N (subnetwork connection protectionwith non-intrusive monitoring) for Higher and lower order VCs

• Multiplex Section Shared Protection Ring or MS-SPRing(selective) at STM-16 level.

Quality and reliability

....................................................................................................................................................................................................................................

1 0 - 6 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 429: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 10-2 WaveStar ® ADM 16/1 circuit packs fit rate

Unit Name Fitrate Unit (10 –9 failures per hour)

Common FAN 111001

FAN CM1 (paddle board without fans) 330

PT-Str3/SEC 3950

T1-DS2 DS0/1 1950

SC 6900

SC2 6710

CC CC-64/16 4100

CC-64/32 4900

CC-64/32B 4700

CC-fixed 1045

Line Interfaces SI-L16.1/1, SI-L16 2/1 8350

SI-L16.1/B SI-L16.2/B 8350

SI-L16.3/1X 8350

SI-L16-CR 8300

SI-16EML80.X/1 8020

SI-16EML9XXX/1 5940

LBA-V16.2/1 6070

LBPA-U16.2/1 10400

Reliability specifications Quality and reliability

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 0 - 7

Page 430: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Table 10-2 WaveStar ® ADM 16/1 circuit packs fit rate (continued)

Unit Name Fitrate Unit (10 –9 failures per hour)

Tributary Interfaces SI-S4.1/1 1500

SI-L4.1/1 SI-L4.2/1 2050

SI-1/4 6010

SA-1/4 3600

SA-1/4B 7200

SA-0/12 9180

OI-I.1/2 1090

OI-S1.1/2 1090

OI-0/6 3510

SPIA-1E4/4 1830

PI-1/4 7800

PI-DS3/12 PI-E3DS3/6+6 7120

PI-E3DS3/12 3428

PI-DS3/6 PI-E3/6 4109

PI-DS1/63 6550

PI-E1/63 5860

IP-LAN/8 tbd

IP-LAN 8 Tlan+ 4517

IP-GE/2 without optics 3862

Paddleboards PB-1E4/W/2 615

PB-1E4/PP2/2 780

PB-E3DS3/6 450

PB-DS1/100/32 490

PB-DS1/P100/32 1900

PB-E1/75/32 24

PB-E1/120/32 344

PB-E1/P75/32 495

PB-E1/P120/32 812

Notes:

1. The manufacturer specifies the L10-lifetime (10% of all fan’s have failed) at 45 °C to be 90.000 hours(10.27 years).

Reliability specifications Quality and reliability

....................................................................................................................................................................................................................................

1 0 - 8 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 431: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Robustness The WaveStar® ADM 16/1 meets ITU recommendations concerningrobustness. This means that:

• Incorrect provisioning of options (software and/or hardware) doesnot lead to damage or degradation of the units.

• Changing a unit under operational conditions does not lead todamage or degradation of the units.

• When a non-traffic-carrying unit is plugged in or removed, noerrors will be caused in the transmission of the system.

• When a traffic-carrying unit is plugged in or removed, no errorswill be caused in any traffic not directly related to that unit.

• Short-circuiting of any electrical inputs and outputs (except thePrimary Power feeds) on user accessible connectors will notcause any damage or degradation.

• There will be no degradation in the equipment performance whenthe subrack and each card are individually subjected to apercussion test.

• Insertion of the incorrect card in to any slot will not causedamage to card or slot.

• Removal of any card (including SC) will not inhibit alarmsreporting to the station alarm scheme or management system.

Reliability specifications Quality and reliability

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 0 - 9

Page 432: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Maintainability specification....................................................................................................................................................................................................................................

The WaveStar® ADM 16/1 requires no periodic maintenance.

For the subrack equipped with a fan, the filter should be replacedonce a year.

Continuous performance monitoring allows theWaveStar® ADM 16/1Multiplexer & Transport to detect and report problems before theybecome service affecting.

Quality and reliability

....................................................................................................................................................................................................................................

1 0 - 1 0 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 433: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

11 Product support

Overview....................................................................................................................................................................................................................................

Purpose This chapter describes Lucent Technologies’ support for theWaveStar® ADM 16/1 Multiplexer and Transport system. Thisincludes engineering and installation services, technical support,documentation support and training.

ContentsIntroduction 11-2

Engineering and installation services 11-3

Training support 11-4

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 1 - 1

Page 434: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Introduction....................................................................................................................................................................................................................................

Lucent Technologies is convinced that product support is an importantpart of its total product offering. Lucent Technologies offers variousservices for the planning, implementation and operations of networkswith the WaveStar® product family. Services for network planninginclude economical and technical support and network planning anddesign. Project implementation services include site-surveys,engineering, installation and testing, acceptance support, databasepreparation and project management. Operations services such as fieldsupport, repair and exchange services, product introduction servicesand emergency recovery services can be provided. The introduction ofthe WaveStar® ADM 16/1 system in networks and the correspondingorganizations is supported by a comprehensive set of training anddocumentation offerings.

Product support

....................................................................................................................................................................................................................................

1 1 - 2 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 435: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Engineering and installation services....................................................................................................................................................................................................................................

Mission The Lucent Technologies Professional Services organization iscommitted to providing customers with quality product supportservices. Whether there is a need for assistance in engineering,installation, normal maintenance, or disaster recovery, the support staffwill provide you with the quality technical support you need to getyour job done. Each segment of the Professional Services organizationregards the customer as its highest priority and understands yourobligation to maintain quality service for your own customers.

Within the Professional Services organization, the Engineering andInstallation Services Group provides a highly skilled force of supportpersonnel to provide customers with quality engineering andinstallation services. These engineering and installation specialists usestate-of-the-art technology, equipment and procedures to providecustomers with highly competent, rapid response services. Theseservices include analyzing your equipment request, preparing adetailed specification for manufacturing and installation, creating andmaintaining job records, installing the equipment, and testing andturning over a working system.

Product support

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

1 1 - 3

Page 436: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Training support....................................................................................................................................................................................................................................

Summary To complement your product needs, Lucent Technologies offers aformal training package, with the single training courses scheduledregularly at Lucent Technologies’ corporate training centers or to bearranged as on-site trainings at your facility.

Registering for a course orarranging an on-site

training

To enroll in a training course at one of the Lucent Technologiescorporate training centers or to arrange an on-site training at yourfacility (suitcasing), please contact:

Asia, Pacific, and China Training Center Singapore, Singapore

voice: +65 6240 8394

fax: +65 6240 8017

Central America andLatin America

Training Center Mexico City, Mexico

voice: +52 55 527 87187

fax: +52 55 527 87185

Europe, Middle East,and Africa

Training Center Nuremberg, Germany

voice: +49 911 526 3831

fax: +49 911 526 6142

North American Region Training Center Altamonte Springs, USA

voice: +1-888-582-3688 – prompt 2

(+1-888-LUCENT8 – prompt 2).

To review the available courses, to enroll for a training course at oneof Lucent Technologies’ corporate training centers, or to obtaincontact information please visit:

Lucent Technologies Products and Solutions Training Catalog(https://www.lucent-product-training.com)

Product support

....................................................................................................................................................................................................................................

1 1 - 4 Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 437: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Glossary

A ADMAdd/Drop Multiplexer

AISAlarm Indication Signal – A code transmitted downstream in a digital network that shows thatan upstream failure has been detected and alarmed if the upstream alarm has not beensuppressed.

ALS or APSDAutomatic Laser Shutdown

APSAutomatic Protection Switch channel

AsynchronousRefers to network elements that are not timed from reference traceable to a single Stratum-1source.

ATMAsynchronous Transport Mode

....................................................................................................................................................................................................................................

B BERBit Error Rate – The ratio of bits received in error to bits sent.

BIPBit Interleaved Parity – A method of error monitoring over a specified number of bits (BIP-3 orBIP-8).

BIP-NBit Interleaved Parity-N – A method of error monitoring. With even parity, an N-bit code isgenerated by the transmitting equipment over a specified portion of the signal so that the firstbit of the code provides even parity over the first bit of all N-bit sequences in the coveredportion of the signal. The second bit provides even parity over the second bits of all the N-bitsequences within the specified portion, etc. Even parity is generated by setting the BIP-N bitsso that there are an even number of ones in each of all N-bit sequences including the BIP-N.

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

G L O S S A R YG L - 1

Page 438: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Broadband CommunicationVoice, data, and/or video communication at rates greater than 2 Mbit/s.

Broadband Service TransportSTM-1 concatenation transport over the SLM-2000 for ATM applications.

....................................................................................................................................................................................................................................

C CCCross-connect

CCITTComité Consultatif International Télégrafique & Téléphonique (International Telephone andTelegraph Consultative Committee)

CEComité Européenne

CEPTConférence Européenne des Administrations des Postes et des Télécommunications

CITCraft Interface Terminal

CMICoded Mark Inversion

ConcatenationCombining the capacity of a multiplicity of Virtual Containers (VCs) into a single container bymaintaining the bit-sequence integrity across this container.

CPCircuit Pack

....................................................................................................................................................................................................................................

D DACSDigital Access and Cross-connect System

DCDirect Current

DCCData Communications Channel – The embedded overhead communication channel in the SDHline. This is used for end-to-end communication and maintenance. It carries alarm, control, andstatus information between network elements in an SDH network.

DCEData Communication Equipment – The equipment that provides the signal conversion andcoding between the data terminating equipment and the line. The DCE may be separateequipment or a part of the data terminating equipment.

....................................................................................................................................................................................................................................

G L O S S A R YG L - 2

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 439: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

DCNData Communications Network

DCSDigital Cross-connect System

DDFDigital Distribution Frame

Default Value ProvisioningThe original values are preprogrammed at the factory. These values can be overridden usinglocal or remote provisioning.

DefectA defect is a limited interruption of the ability of an item to perform a required function. It mayor may not lead to maintenance action depending on the results of additional analysis.

DemultiplexingA process applied to a multiplexed signal for recovering signals combined within it and forrestoring the distinct individual channels of these signals.

DownstreamAt or towards the destination of the considered transmission stream, i.e. looking in the sametransmission direction.

DTEData Terminating Equipment – The equipment that originates data for transmission and acceptstransmitted data.

Dual Node InterworkingDual Node Interworking (DNI) is a configuration of two ring networks that share two commonnodes. DNI allows a circuit with one termination in one ring and one termination in anotherring to survive a loss-of-signal failure of the shared node that is currently carrying service forthe circuit.

DWDMDense Wavelength Division Multiplexing

....................................................................................................................................................................................................................................

E ECEuropean Community

ECCEmbedded Control Channel

EEPROMElectrically Erasable Programmable Read-Only Memory

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

G L O S S A R YG L - 3

Page 440: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

ELElement Level

EMEvent Management. Subsystem of ITM that processes and logs event reports of the network.

EMCElectromagnetic Compatibility

EMIElectromagnetic Interference

EMSElement Management System

EOWEngineer Order Wire

EPROMErasable Programmable Read-Only Memory

ESErrored Seconds – A performance monitoring parameter.

ESDElectroStatic Discharge

ETSIEuropean Telecommunication Standardization Institute

Externally TimedAn operating condition of a clock in which it is locked to an external reference and uses timeconstants that are altered to quickly bring the local oscillator’s frequency into approximateagreement with the synchronization reference frequency.

Extra TrafficUnprotected traffic carried over the protection channels when that capacity is not used for theprotection of service traffic.

....................................................................................................................................................................................................................................

F FITFailures in Time – circuit-pack failure rate per 109 hours is calculated.

Flash EPROMA new technology that combines the non-volatility of EPROM with the in-circuitreprogrammability of EEPROM (Electrical-Erasable PROM).

....................................................................................................................................................................................................................................

G L O S S A R YG L - 4

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 441: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Folded RingsFolded (collapsed) rings are rings without fiber diversity. The terminology derives from theimage of folding a ring in a linear segment.

Free-runningAn operating condition of a network element in which its local oscillator is not locked to anysynchronization reference and is not using any storage techniques to sustain its accuracy.

FT-LBAFT-Lightwave Booster Amplifier

....................................................................................................................................................................................................................................

G Gbit/sGigabits per second

GNEGateway Network Element – A network element that passes information between other networkelements and operation systems via a data communication network.

....................................................................................................................................................................................................................................

H HDLCHigh-level Data Link Control; family of layer 2 protocols.

HoldoverAn operating condition of a clock in which its local oscillator is not locked to an externalreference but is using storage techniques to maintain its accuracy with respect to the last knownfrequency comparison with a synchronization reference.

....................................................................................................................................................................................................................................

I I/OInput/Output

ICBInterConnection Box

IECInternational Electrotechnology Commission or Interexchange Carrier

IEEEInstitute of Electrical and Electronic Engineers

ISMIntelligent Synchronous Multiplexer

ISOInternational Standards Organization

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

G L O S S A R YG L - 5

Page 442: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

....................................................................................................................................................................................................................................

J JitterJitter is defined as short-term variations of the significant instants of a digital signal from theirideal position in time.

....................................................................................................................................................................................................................................

L LANLocal Area Network

LBOLine Build Out – An optical attenuator that guarantees the proper signal level and shape at thereceiver input.

LineAn optical transmission line. “Line” refers to a transmission medium, together with theassociated high-speed equipment, required to provide the means of transporting informationbetween two consecutive network elements, one of which originates the line signal and the otherterminates the line signal.

Loop TimingA timing mode in which the terminal derives its transmit timing from the received line signal.

LSLow-Speed part

LVDLow Voltage Directive (EC)

....................................................................................................................................................................................................................................

M ManagerIs capable of issuing network management operations and receiving events

MCFMessage Communications Function. This function provides facilities for the transport androuting of TMN messages to and from the network manager

MenuA set of possible values for a parameter.

MIBThe Management Information Base is the database in the node and contains the configurationdata of the node. A copy of each MIB is available in the EMS and is called the MIB image.Under normal circumstances, the MIB and MIB image of one node are synchronized.

Midspan MeetThe capability to interface between two Lightwave Terminals of different vendors. This appliesto high-speed optical interfaces.

....................................................................................................................................................................................................................................

G L O S S A R YG L - 6

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 443: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

MSMultiplexer Section

MSOHMultiplex Section Overhead. Part of the SOH (section overhead). Is accessible only at lineterminals and multiplexers.

MSPMultiplex Section Protection. Provides capability for switching a signal from a working to aprotection section.

MTBFMean Time Between Failures. The dimension of MTBF is in Years.

MultiplexingA procedure by which multiple lower order path layer signals are adapted into a higher orderpath, or multiple higher order path layer signals are adapted into a multiplex section.

....................................................................................................................................................................................................................................

N NENetwork Element. The NE is comprised of telecommunication equipment (or groups/parts oftelecommunication equipment) and support equipment that performs network element functionsand has one or more standard Q-type interfaces.

nmNanometer (10–9 meter)

NodeA node or Network Element is defined as all equipment that is controlled by one systemcontroller.

Non-revertive switchingIn non-revertive switching, there is an active and standby high-speed line, circuit pack, etc.When a protection switch occurs, the standby line, circuit pack, etc., is selected causing the oldstandby line, circuit pack, etc., to be used for the new active line, circuit pack, etc. The originalactive line, circuit pack, etc., becomes the standby line, circuit pack, etc. This status remains ineffect when the fault clears. Therefore, this protection scheme is “non-revertive” in that there isno switch back to the original status in effect before the fault occurred.

NPPANon-Preemptible Protection Access. Also known as NUT or selective MS SPRing.The user hasthe option to determine for each VC-4(-4c) individually, whether or not it participates in theMS-SPRing switching scheme. If an individual VC-4(-4c) does not participate then it can beeither VC-4(-4c) SNC protected or not protected at all.

NUTNon-preemptable Unprotected Traffic. Also known as NPPA or selective MS SPRing. The userhas the option to determine for each VC-4(-4c) individually, whether or not it participates in theMS-SPRing switching scheme. If an individual VC-4(-4c) does not participate then it can be

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

G L O S S A R YG L - 7

Page 444: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

either VC-4(-4c) SNC protected or not protected at all.

....................................................................................................................................................................................................................................

O OAM&POperations, Administration, Maintenance and Provisioning

Operation InterfaceAny interface providing you with information on the system behavior or control. These includethe equipment LEDs, user panel,WaveStar® ADM 16/1-EM, office alarms, and all telemetryinterfaces.

Operations InterworkingThe capability to access, operate, provision, and administer remote systems throughWaveStar®

ADM 16/1-EM access from any site in an SDH Network or from a centralized operationssystem.

OSOperations System – A central computer-based system used to provide operations,administration, and maintenance functions.

OSIOpen System InterConnection

....................................................................................................................................................................................................................................

P ParameterA characteristic of the system that affects its operation.

PathA path at a given rate is a logical connection between the point at which a standard format for asignal at the given rate is assembled and the point at which the standard frame format for thesignal is disassembled.

Path AISPath Alarm Indication Signal – A path-level code that is sent downstream in a digital network asan indication that an upstream failure has been detected and alarmed.

Path Terminating EquipmentNetwork elements in which the path overhead is terminated.

PBPPaddle board

PDHPlesiochronous Digital Hierarchy

Phase LockedSee Externally Timed

....................................................................................................................................................................................................................................

G L O S S A R YG L - 8

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 445: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

PlatformA platform is a family of equipment and software configurations designed to support aparticular application.

Plesiochronous NetworkA network that contains multiple subnetworks, each internally synchronous and all operating atthe same nominal frequency, but whose timing may be slightly different at any particularinstant.

PLLPhase Lock Loop

PMPerformance Monitoring – Measures the Quality of Service and identifies degrading ormarginally operating systems (before an alarm would be generated).

POTSPlain Old Telephone Service

PPIPlesiochronous Physical Interface

Pre-provisioningThe capability to provision a slot before installing a circuit pack.

Proactive MaintenanceRefers to the process of detecting degrading conditions not severe enough to initiate protectionswitching or alarming, but indicative of an impending signal fail or signal degrade defect.

ProtectionLabel attached to a physical entity. In case of reverse switching, the protection line or circuitpack is the entity that is not carrying service (standby) under normal operation. The label hasno particular meaning in case of non-reverse switching.

ProvisioningAssigning a value to a system parameter.

PSTNPublic Switched Telephone Network

PT-stndPower and timing circuit pack ofWaveStar® ADM 16/1 providing synchronization and powerfiltering, 4.6 ppm hold over accuracy.

PT-str3Power and timing circuit pack ofWaveStar® ADM 16/1 providing synchronization and powerfiltering, 0.37 ppm hold over accuracy.

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

G L O S S A R YG L - 9

Page 446: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

....................................................................................................................................................................................................................................

R RDIRemote Defect Indicator – [(Previously called Far-End-Receive-Failure (FERF)] An indicationreturned to a transmitting terminal that the receiving terminal has detected an incoming sectionfailure.

Receive-directionThe direction towards the cross-connect

Revertive SwitchingIn revertive switching, there is a working and protection high-speed line, circuit pack, etc.When a protection switch occurs, the protection line, circuit pack, etc., is selected. When thefault clears, service “reverts” back to the original working line.

RSOHRegenerator Section Overhead. Part of SOH.

....................................................................................................................................................................................................................................

S SCSystem Controller

SDSignal degrade

SDHSynchronous Digital Hierarchy. Definition of the degree of control of the various clocks in adigital network over other clocks.

SectionA transport entity in the transmission media layer network which provides integrity ofinformation transfer across a section layer network connection by means of a terminationfunction at the section layer.

SEFSSeverely Errored Frame Seconds – A performance monitoring parameter.

Self-healingA network’s ability to automatically recover from the failure of one or more of its components

SEMFSynchronous Equipment Management Function. This function converts performance data andimplementation-specific hardware alarms into object-oriented messages for transmission over theDCC and/or Q-interface. It also converts object-oriented messages related to other managementfunctions for passing across the S reference points

ServiceThe operational mode of a physical entity that indicates that the entity is providing service. Thisdesignation changes with each switch action.

....................................................................................................................................................................................................................................

G L O S S A R YG L - 1 0

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 447: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

SESSeverely Errored Seconds – A performance monitoring parameter.

SFSignal Fail

SLMSynchronous Line Multiplexer

SOHSection Overhead. Capacity added to either an AU-4 or assembly of AU-3s to create an STM-1.Contains always STM-1 framing and optionally maintenance and operational functions. SOH canbe subdivided in MSOH (multiplex section overhead) and RSOH (regenerator section overhead).

SONETSynchronous Optical NETwork

StandbyThe operational mode of a physical entity that indicates that the entity is not providing service,but standby. This designation changes with each switch action.

STMSynchronous Transport Module Building block of SDH.

SubnetworkA group of interconnected/interrelated network elements. The most common connotation is anSDH Network in which the network elements have data communications channels (DCC)connectivity.

SynchronousRefers to Network elements that are timed from references traceable to a single Stratum-1 clocksource.

Synchronous NetworkThe synchronization of synchronous transmission systems with synchronous payloads to amaster network clock that can be traced to a single reference clock.

....................................................................................................................................................................................................................................

T TMNTelecommunications Management Network

Transmit-directionThe direction outward from the cross-connect.

TributaryA 2 Mbit/s, 34 Mbit/s, 45 Mbit/s, 51.84 Mbit/s (STM-0), 140 Mbit/s (CEPT-4), 155 Mbit/s(STM-1) or 622 Mbit/s (STM-4) signal within theWaveStar® ADM 16/1.

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

G L O S S A R YG L - 1 1

Page 448: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

TSATime Slot Assignment

TSITimeslot Interchange

....................................................................................................................................................................................................................................

U UASUnavailable Seconds – A performance monitoring parameter.

UpgradeAn upgrade is the addition of new capabilities (feature). This requires new software and mayrequire new hardware.

UpstreamAt or towards the source of the considered transmission stream, i.e. looking in the oppositedirection of transmission.

....................................................................................................................................................................................................................................

V ValueA number, text string, or other menu selection associated with a parameter.

....................................................................................................................................................................................................................................

W WaveStar ® DACS 4/4/1One of Lucent Technologies’ PDH/SDH-ready digital access and Cross-connect systems.

WDMWavelength Division Multiplex

Wideband CommunicationsVoice, data, and/or video communication at digital rates from 64 kbit/s to 2 Mbit/s.

WorkingLabel attached to a physical entity. In case of revertive switching, the working line or circuitpack is the entity that is carrying service under normal operation. In case of non-revertiveswitching, the label has no particular meaning.

WSWorkstation

....................................................................................................................................................................................................................................

G L O S S A R YG L - 1 2

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 449: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Index

Numerics

1000BASE-X GigabitEthernet tributary board,4-34

........................................................

A Access node,2-43, 2-44

Add/drop capacity,1-2

AIS detection,5-14

ATM, 1-3, 2-3

AU-3 / TU-3 conversion,2-9, 4-36

Availability, 1-5........................................................

B Bandwidth allocation(GbE), 2-26

Basic architecture,1-4, 4-2

Blocked port,2-32

Broadcast,1-3, 2-3, 3-2,3-11

........................................................

C Cabling, 7-15

Cascaded protection,2-6

Circuit pack faceplateLED, 5-3

Circuit pack naming,8-9

Circuit pack types,4-9

CIT interface,5-5

Classification, Queueingand Scheduling (CQS),2-70

Collapsed ring,3-5

Color unaware one-ratetwo-color marker,2-75

Committed burst size(CBS), 2-75

Committed information rate(CIR), 2-75

Configuration rules,8-6

Contiguous concatenation,3-12

CQSSee: Classification,

Queueing andScheduling

Cross-connect,1-5, 4-3,4-36

Customer identification(CID), 2-57

Customer identifier (CID),2-52

Customer role port,2-52

Customer-role port,2-51,2-57, 2-67, 2-67

........................................................

D Data communicationchannel (DCC),1-6, 2-1,5-6

Default user priority,2-78

Delay-insensitive traffic,2-81

Delay-sensitive traffic,2-81

Designated port,2-32

Differential delay,2-26

Dimensions,2-14

DNI, 2-5

Drop and continue,2-5

Dropper / Marker,2-78

Dropping precedence,2-75

Dual Node Interworking(DNI), 1-3, 2-3, 3-16

Dual WDM unit, 7-6

Dynamic bandwidthadjustment (GbE),2-26

Dynamic VLAN ID list,2-58

........................................................

E E4/STM-0/STM-1 circuitpack, 4-36

Electrical connector,9-17

Electrical paddle board,4-8, 8-15, 8-16

Electrical tributaries circuitpack, 4-12

Electrical tributaryinterface,8-14

Equipment protection(redundancy),4-44

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

I N D E XI N - 1

Page 450: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Ethernet frame,2-57

Ethernet over SDH,3-19

Ethernet over SDH (EoS),2-18

Ethernet switch,2-17

Ethernet/Fast Ethernettributary board,4-13

Ethertype,2-55, 2-59, 2-59,2-60, 2-71

........................................................

F F interface,2-11

Fiber connector conversionkit, 7-12

Fixed cross-connect,1-6

Flattened ring,3-5

Flow classifier,2-74

Flow control, 2-49

Folded ring,3-5, 3-7

Free-running operation(FR), 2-7, 4-41

Frequency offset handling,2-7

Full time slot assignment(TSA), 2-3

........................................................

G GARP VLAN RegistrationProtocol (GVRP),2-35,2-58

Generic framing procedure(GFP), 2-18

GFP encapsulation

VC12–Xv, 2-19

VC3–Xv, 2-19

VC4–Xv, 2-20

Grooming,1-3, 2-3

GVRP, 2-35, 2-68........................................................

H High-density shelf,4-6

Higher order cross-connect,1-5

Hold-over mode (HO),2-7,4-41

Horizontal connector plate(HCP), 7-11

Hub node,2-43, 2-44

Hubbing, 1-3, 2-3, 3-2, 3-9........................................................

I

IEEE 802.1ad VLANtagging mode,2-59

IEEE 802.1Q VLANtagging,2-58

Interconnection panel(ICP), 7-7

Interface circuit packs,1-6

Interfaces,4-2

ITM-Craft InterfaceTerminal (ITM-CIT), 2-11

........................................................

L LAN group, 2-17, 2-52,2-57

LAN interconnect,2-49

LAN interconnect mode,2-51

LAN port, 2-16

LAN-interconnect mode,4-13

LAN-ISP interconnect,3-20

LAN-to-LAN interconnect,3-19, 3-19

LAN-VPN, 2-51

LAN-VPN application,3-20

LAN-VPN mode, 4-13

LAN-VPN with 802.1pQoS mode,4-13

LCASSee: Link capacity

adjustment scheme

Learning bridges,2-22

Line interface unit,8-11

Linear applications,3-5

Link capacity adjustmentscheme (LCAS),2-26

Locked mode (LO),2-7,4-41

Loop-back,5-6

Lower order cross-connect,1-5

........................................................

M Maintenance application,5-9

Maintenance signaling,5-14

Maximum bridge diameter,2-30

Miscellaneous discreteinput (MDI), 2-11, 5-5

Miscellaneous discreteoutput (MDO), 2-11, 5-5

Mixing, 2-3

MS-SPRing protectedSTM-16 ring, 3-7

Multi-service application,3-2

Multiplex SectionProtection (MSP),2-3,2-5, 4-45

Multiplex Section SharedProtection Ring(MS-SPRing),2-3, 2-5,4-45

........................................................

N Navis® OpticalManagement System(OMS), 2-11

Network applications,1-3

Network protection,4-44

....................................................................................................................................................................................................................................

I N D E XI N - 2

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 451: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Network role port,2-52

Network-role port,2-51,2-57, 2-67, 2-67

Non-revertive operation,4-45

........................................................

O Office alarm interface,2-11, 5-5

Optical amplifier,4-9

Optical booster,2-3, 2-10

Optical Gigabit Ethernetinterface,4-9

Optical interface circuitpack, 4-9

Optical interfaces fortributaries,4-9

Optical pre-amplifier,2-10

Optical tributary interface,8-13

Oversubscription mode,2-77

........................................................

P Path cost,2-31

Path protected ring,1-3

Payload concatenation,1-3,2-3, 3-2, 3-12

PDH transmission,6-3

Peak information rate(PIR), 2-76

Performance monitoring,2-86, 5-9

Performance monitoringcounter,5-9

Point-to-point (end)terminal connections,3-2

Port role,2-65

Port VLAN identifier(PVID), 2-58

Power and timingarchitecture,4-39

Power and timing circuitpack (PT),1-7, 4-4, 4-37

Printed circuit board,7-5

Propagation delay,2-26

Protected STM-Npoint-to-point application,3-3

Protection mechanisms,1-2

Provider bridge mode,2-71

Provider bridge taggingmode,2-59

Provisioning,5-17

LAN and WAN portsdetails,2-73

........................................................

Q Q interface,2-11

Q-LAN, 2-11

Q-LAN interface,5-5

Quality of service,2-23

Quality of Service,2-70

Quality of Service (QoS),4-13, 5-9

Queue,2-80

Queue scheduling method,2-81

........................................................

R Rapid spanning treeprotocol (rSTP),2-33

Rate control,2-44

Rate control mode,2-77

Rate control modes,2-76

Reliability, 1-5

Repeater,2-47

Repeater mode,2-39, 4-13

Report,5-15

Revertive operation,4-45

Ring application,3-6

Ring closure,1-3, 3-15

Root port,2-31

Routing, 1-5

rSTPSee: Rapid spanning tree

protocol........................................................

S Scheduler,2-81

SDH Equipment Clock(SEC), 1-7, 2-7, 4-4

Service level agreements,2-72

Signal types,4-2

Small cross-connect,1-3,2-3, 3-2, 3-9

SNC/N, 2-3, 2-5

SONET-SDH conversion,2-3, 3-2, 3-17

SONET-SDH interworking,3-17

Spanning tree,2-53

Spanning tree protocol,2-30

Spanning Tree Protocol(STP), 4-13

Spanning Tree SwitchedNetwork, 4-13

Spanning tree with VPNregistration protocol(STVRP), 2-35, 2-53,2-58

Static VLAN ID list, 2-58

Station equipment clocks(SEC), 4-39

STM-16 optical line portunits, 4-9

STM-16 two fiber add/dropterminal, 3-5

STM-N point-to-point (end)terminal application,3-3

STPSee: Spanning tree

protocol

....................................................................................................................................................................................................................................

365-312-833Issue 1, May 2005

Lucent Technologies - ProprietarySee notice on first page

I N D E XI N - 3

Page 452: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Strict policing mode,2-76

Strict priority, 2-81

STVRP, 2-35, 2-58, 2-68See: Spanning tree with

VPN registrationprotocol

Sub-network ConnectionProtection (SNCP),4-45

Subrack,4-6, 7-3, 8-5

Switch priority, 2-31

Synchronization,2-7, 2-7,4-39

Synchronization network,8-3

Synchronization StatusMessage (SSM),2-7

System Controller (SC),1-6, 4-4, 4-37, 5-2

........................................................

T Time slot interchange(TSI), 2-3

Timing, 4-39

Timing and synchronizationinterface,8-15

Timing and synchronizationinterface circuit pack,4-35

Timing marker,2-3

Timing mode,4-37, 4-40

Timing mode protection,2-7

Timing mode selection,4-41

Timing referenceprotection,2-7

Traffic class,2-79, 2-80

TransLAN®, 2-3, 3-2, 3-19

TransLAN® operationmodes,4-13

Transparent tagging,2-57

Tributary interface mixing,1-3

Tributary retiming,2-7

Tributary timing, 2-3

Trunking applications,2-42

Trunking LAN interface,2-59

........................................................

U User channel,5-6

User panel,5-2

User panel connector,5-3

User panel control,5-3

User panel LEDs,5-3

User priority, 2-78........................................................

V VC allocation (GbE),2-29

Virtual concatenation,1-3,2-21, 2-24, 2-24, 3-2,3-12

Virtual switch, 2-17

VLAN

trunking, 2-54

VLAN ID list, 2-58

VLAN tagging, 2-58

VLAN trunking, 2-21, 2-42, 3-21

VLAN trunkingapplication,4-13

VPN tagging,2-52, 2-57........................................................

W WAN port, 2-16

WaveStar® ITM-SC, 2-11

Weighted bandwidth,2-81

....................................................................................................................................................................................................................................

I N D E XI N - 4

Lucent Technologies - ProprietarySee notice on first page

365-312-833Issue 1, May 2005

Page 453: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Power Budget And Loss Budget

The terms "power budget" and "loss budget" are often confused.

The power budget refers to the amount of loss that a datalink (transmitter to

receiver) can tolerate in order to operate properly. Sometimes the power budget has

both a minimum and maximum value, which means it needs at least a minimum

value of loss so that it does not overload the receiver and a maximum value of loss

to ensure the receiver has sufficient signal to operate properly.

The loss budget is the amount of loss that a cable plant should have. It is

calculated by adding the average losses of all the components used in the cable

plant to get the total estimated end-to-end loss. The loss budget has two uses, 1)

during the design stage to ensure the cabling being designed will work with the

links intended to be used over it and 2) after installation, comparing the calculated

loss to test results to ensure the cable plant is installed properly.

Some standards refer to the loss budget as the "attenuation allowance" but there seems to be very limited use of that term.

Obviously, the power budget and loss budget are related. A data link will only

operate if the cable plant loss is within the power budget of the link.

Remember the calculated loss budget is an estimate that assumes the values

of component losses and does not take into account the uncertainty of the

measurement. Be aware of this because if measurements are close to the loss

budget estimates, some judgement is needed to not fail good fibers and pass bad ones!

Power Budget

All datalinks are limited by the power budget of the link. The power budget is the

difference between the output power of the transmitter and the input power

Page 454: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

requirements of the receiver, both of which are defined as power coupled into or

out of optical fiber of a type specified by the link. The receiver has an operating

range determined by the signal-to-noise ratio (S/N) in the receiver. The S/N ratio is

generally quoted for analog links while the bit-error-rate (BER) is used for digital

links. BER is practically an inverse function of S/N. Transceivers may also be

affected by the distortion of the transmitted signal as it goes down the fiber, a big

problem with multimode links at high speeds or very long OSP singlemode links.

When testing a fiber in a cable plant to determine if the cable plant will allow a

specific link to operate over it, the test should be made from transceiver to

transceiver, e.g. the cable plant with patchcords installed on either end that would

be used to connect the transceivers to the cable plant. When doing a link loss

budget (below) for the cabling to be used with a given link to determine if the link will operate over that link, the loss of the patchcords should also be included.

Note:

This concept gets many questions - but two are most common. Why do you

Page 455: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

include the loss of the connectors on the ends if they are connected to a transmitter

and receiver. And what about testing a permanently installed cable plant from

patch-panel (or wall outlet) to another patch panel, not including the final patchcords used to connect equipment.

Why do you include the connectors on each end? Depending on the design of

the transceivers, practically every factor in connector loss affects coupling to a

transmitter or receiver as well. Consider what would happen if you tested that

cable plant in the loss budget example. You would use a source with a launch

reference cable, the output of which would be calibrated to "0dB." When you

attach it to the cable plant you will have a connection loss between the launch

cable connector and the connector on the end of the cable plant. Then you would

see the losses from the fiber, connectors and splices in the cable plant, down to the

last connector. That connector would have a connection loss when mated to the

receive reference cable attached to the meter. Thus, when testing the cable plant,

or estimating the loss with a loss budget, you always include the connectors on

each end. Also when equipment manufacturers specify the power budget, as far as we know all are considering coupling losses at both ends.

Suppose you are testing a cable plant without including the patchcords to

connect the equipment. The loss you measure will be less than what is expected to

be considered in the cable plant power budget. But all that is missing is a short

length of fiber in the patchcord (small enough to be ignored) and the connector on

each end. So your comparison of the cable plant loss budget to the power budget should allow for the addition of two connection losses.

Data From Manufacturer's Specification for Active Components (Typical 100

Mb/s link)

Operating Wavelength (nm) 1550nm

Fiber Type SM

Receiver Sens. (dBm@ required

BER) -28

Average Transmitter Output (dBm) -10

Dynamic Range (dB) 15

Recommended Excess Margin (dB) 2

Page 456: ANALISIS KINERJA JARINGAN SERAT OPTIK PADA RING 1 DI ARNET JATINEGARA

Power Margin Calculation

1550nm

Dynamic Range (dB) (above) 15

15

Cable Plant Link Loss (dB) 5.0(Typ)

9.0 (Typ)

Link Loss Margin (dB) 11.5

9.25

For wavelength 1550 nm as the general rule, the link loss margin

should be greater than approximately 2 dB to allow for link degradation

over time. LEDs in the transmitter may age and lose power, connectors or splices

may degrade or connectors may get dirty if opened for rerouting or testing. If

cables are accidentally cut, excess margin will be needed to accommodate splices

for restoration. The 2 dB rule, of course, is irrelevant if the power budget is ~2dB

like some of the 10G singlemode links. Then the need for the best quality

installation is critical!

NOTE: Many techs forget when doing a loss budget that the connectors on the end

of the cable plant must be included in the loss budget. When the cable plant is

tested, the reference cables will mate with those connectors and their loss will be

included in the measurements.

Related Topics:

Guidelines On What Loss To Expect When Testing Fiber Optic Cables For

Insertion Loss With A Meter and Source or OLTS

Table of the cable plant length and loss margins for most LANs and Links

More detailed information can be found on the FOA Online Reference Guide.

Return To The FOA Home Page

Return To FOA Tech Topics

(C) 2004-13 The Fiber Optic Association, Inc.