8.0 Gugus Karbonil

download 8.0 Gugus Karbonil

of 64

Transcript of 8.0 Gugus Karbonil

  • 8/7/2019 8.0 Gugus Karbonil

    1/64

    SENYAWA GUGUS KARBONIL

  • 8/7/2019 8.0 Gugus Karbonil

    2/64

  • 8/7/2019 8.0 Gugus Karbonil

    3/64

    Aldehydes and Ketones

  • 8/7/2019 8.0 Gugus Karbonil

    4/64

    The Carbonyl Group

    In the remainder of the course, we will studythe physical and chemical properties of classesof compounds containing the carbonyl C=O group.

    aldehydes and ketones (Chapter 16) carboxylic acids

    acid halides, acid anhydrides, esters, amides

  • 8/7/2019 8.0 Gugus Karbonil

    5/64

    The Carbonyl Group

    The carbonyl group consists of one sigmabond formed by the overlap of sp2 hybridorbitals and one pi bond formed by the

    overlap of parallel 2p orbitals pi bonding and pi antibonding MOs forformaldehyde

  • 8/7/2019 8.0 Gugus Karbonil

    6/64

    Structure

    The functional group of an aldehyde is acarbonyl group bonded to an H atom and acarbon atom.

    The functional group of a ketone is a carbonyl

    group bonded to two carbon atoms.

    Propanone

    (Acetone)

    Ethanal

    (Acetaldehyde)

    Methanal

    (Formaldehyde)

    O O O

    CH3 CHHCH CH3 CCH3

  • 8/7/2019 8.0 Gugus Karbonil

    7/64

    Nomenclature

    IUPAC names: The parent chain is the longest chain thatcontains the carbonyl group.

    For an aldehyde, change the suffix from --ee

    to --alal. For an unsaturated aldehyde, change the

    infix from --anan-- to --enen--; the location ofthe suffix determines the numberingpattern.

    For a cyclic molecule in which -CHO isbonded to the ring, add the suffix -carbaldehydecarbaldehyde.

  • 8/7/2019 8.0 Gugus Karbonil

    8/64

    Nomenclature: Aldehydes

    H

    O

    3-Meth ylb utanal 2-Propen al(Acrolein)

    (2E)-3,7-Dimethyl-2,6-octadienal(Geranial)

    1

    2

    3

    4

    5

    6

    7

    8H

    O

    H

    O

    CHO HO CHO

    Cycl p n t n -carbald hyde

    trans- -Hydroxycyclo-

    hexanecarbaldehyde

    14

    CHOC6 H5CHO

    t ra s-3-Phe yl-2-prope alCi amal ehyde)Be zaldehyde

    The IUPAC naming uses the common namesbenzaldehyde, cinnamaldehyde, formaldehydeand acetaldehyde.

  • 8/7/2019 8.0 Gugus Karbonil

    9/64

    Nomenclature: Ketones

    IUPAC names The parent alkane is the longest chain that

    contains the carbonyl group.

    For a ketone, change the suffix--ee to --oneone.

    Number the chain to give C=O the smallernumber.

    IUPAC uses the common names acetone,

    acetophenone, and benzophenone.

    Propanone(Acetone) Benzophenone 1-Phenyl-1-pentanoneAcetophenone

    O O OO

  • 8/7/2019 8.0 Gugus Karbonil

    10/64

    Order of PrecedenceFor compounds containing more than onefunctional group usually indicated by a suffix:

  • 8/7/2019 8.0 Gugus Karbonil

    11/64

    Common Names For an aldehyde, the common name is derived

    from the common name of the correspondingcarboxylic acid.

    For a ketone, name the two alkyl or aryl groups

    bonded to the carbonyl carbon and add theword ketone.

    HCH

    O

    HCOH

    O

    CH3 CH

    O

    CH3 COH

    O

    Formaldehyde Formic acid Acetaldehyde Acetic acid

    Ethyl isopropyl ketone Diethyl ketone Dicyclohexyl ketone

    OO

    O

  • 8/7/2019 8.0 Gugus Karbonil

    12/64

    Physical Properties Oxygen is more electronegative than

    carbon (3.5 vs 2.5) and, therefore, a C=Ogroup is polar.

    C C H-H+ +

    More importantcontributing

    structure

    C C C

    Polarity ofa carbonyl

    group

    +C

    Aldehydes and ketones are polar compounds andinteract in the pure state by dipole-dipole interaction.

    They have higher boiling points and are moresoluble in water than nonpolar compounds of

    comparable molecular weight.

  • 8/7/2019 8.0 Gugus Karbonil

    13/64

    Reaction Themes

    One of the most common reactionthemes of a carbonyl group is additionof a nucleophile to form a tetrahedralcarbonyl addition compound.

    Tetrahedral carbonyladdition compound

    + C

    R

    R

    CNu

    RR

    Nu

  • 8/7/2019 8.0 Gugus Karbonil

    14/64

    Reaction Themes

    A second common theme is reaction with aproton or other Lewis acid to form aresonance-stabilized cation.

    Protonation increases the electron

    deficiency of the carbonyl carbon and makesit more reactive toward nucleophiles.

    B

    C OR

    R

    H N

    H B

    C O

    R

    R

    H

    B C O

    R

    RH

    CN

    O H

    RR

    C O

    R

    RH

    H B

    +

    fas ++

    +

    +slow

    Tetredr r

    +

    + +

  • 8/7/2019 8.0 Gugus Karbonil

    15/64

    Reaction Themes

    Often the addition to a carbonyl group willproduce a new stereocenter.

    If none of the starting materials is chiral andthe reaction takes place in an achiral

    environment, a racemic mixture will be formed.

    N u- C ORR'

    N u

    OR'

    R

    N u

    OR

    R' + 3 O+

    N u

    OR

    R'

    N u

    OR'

    R

    +

    A racemic mixt reA new chiralcenteris created

    Approach from

    the bottom face

    Approach from

    the top face

  • 8/7/2019 8.0 Gugus Karbonil

    16/64

    Addition of C NucleophilesAddition of carbon nucleophiles is one of themost important types of nucleophilic additionsto a C=O group.

    A new carbon-carbon bond is formed in the

    process. Four common types of carbon nucleophiles are:

    RMgX RLi - CRC C - N

    A Grig arreage t

    An organolit iumreagent

    An al ynean ion

    Cyan i e ion

  • 8/7/2019 8.0 Gugus Karbonil

    17/64

    Grignard Reagents

    Given the difference in electronegativitybetween carbon and magnesium (2.5 - 1.3),the C-Mg bond is polar covalent, with C- andMg +.

    A Grignard reagent behaves as acarbanion.

    Carbanion:Carbanion: An anion in which carbon has anunshared pair of electrons and bears a

    negative charge. A carbanion is a good nucleophile and adds

    readily to the carbonyl group of aldehydesand ketones.

  • 8/7/2019 8.0 Gugus Karbonil

    18/64

    Grignard Reagents

    Addition of a Grignard reagent toformaldehyde followed by treatment withH3O

    + gives a 1r alcohol.

    CH CH2 -MgBr

    O

    H-C-H

    O-[MgBr]

    +

    CH CH2 -CH2HCl

    H2 O

    OH

    CH CH2 -CH2 Mg2+

    ether

    1-Propanol(a1alcohol)

    Formaldehyde

    +

    +

    Amagnesiumalkoxide

  • 8/7/2019 8.0 Gugus Karbonil

    19/64

    Grignard Reagents

    Addition to any other RCHO gives a2r alcohol.

    MgBr

    -[MgBr]

    +

    ClH2 O

    OH

    Mg2+

    +et er

    Acetal e y e

    (analdehyde)

    +

    A magne ium

    al o i e

    1-Cyclo e ylet anol

    (a 2 alco ol;

    (racemic)

  • 8/7/2019 8.0 Gugus Karbonil

    20/64

    Grignard Reagents

    Addition to a ketone gives a 3r

    alcohol.

    Ph-MgBrO

    Ph

    O-[MgBr]

    +HCl

    H2 O Ph

    OH

    Mg2+

    +

    Acetone(a ketone)

    ether

    +

    Amagnesiumalkoxide

    2-Phenyl-2-propanol(a 3 alcohol)

    Phenyl-magnesiumbromide

  • 8/7/2019 8.0 Gugus Karbonil

    21/64

    Grignard Reagents

    Problem:Problem: 2-Phenyl-2-butanol can besynthesized by three different combinationsof a Grignard reagent and a ketone. Show eachcombination.

    C-CH2 CH3

    CH3

    OH

  • 8/7/2019 8.0 Gugus Karbonil

    22/64

    Organolithium Compounds

    Organolithium compounds are generallymore reactive in C=O addition reactionsthan RMgX, and typically give higheryields.

    LiO

    O-

    Li

    HCl

    H2 O

    OH

    3,3- imethyl-2-b ta o e

    3,3- imethyl-2-phe yl-2-b ta ol(racemic)

    +

    Phe yl-

    lithi m

    A lithi m al o ide

    (racemic)

  • 8/7/2019 8.0 Gugus Karbonil

    23/64

    Salts of Terminal Alkynes

    Addition of an alkyne anion followed bytreatment with H3O+ gives an -acetylenic alcohol.

    C:-

    N a+

    HC

    OC O-N a+HC

    HCl

    H2 O

    C OHHC

    1- t ynyl-cyclo e anol

    A o iumal o i e

    +

    Cyclo e anoneSo ium

    acetyli e

  • 8/7/2019 8.0 Gugus Karbonil

    24/64

    Hydration of Terminal Alkynes

    H2

    H C CH H2 S 4 , H S 4

    1. (sia)2 BH

    2. H2 2 , Na H

    H CCH3

    H CH2

    CH

    AnE-h drox kon

    AF-h drox deh de

    E

    F

    E

  • 8/7/2019 8.0 Gugus Karbonil

    25/64

    Addition of HCN

    HCN adds to the C=O group of an aldehyde orketone to give a cyanohydrin.

    Cyanohydrin:Cyanohydrin: A molecule containing an -OHgroup and a -CN group bonded to the same

    carbon.

    -H r r e itrile( cet l e e c ri )

    + HC N CH3

    C-

    C NCH3

    CH

    OH

    H

    O

  • 8/7/2019 8.0 Gugus Karbonil

    26/64

    Addition of HCN Mechanism of cyanohydrin formation

    Step 1: Nucleophilic addition of cyanide

    -

    +

    H3 C

    C

    H3 C

    O

    O-

    H3 C

    H3

    C

    C

    N

    N

    C

    C

    O-

    H3

    C

    H3

    C

    C N

    NH C C

    C

    H3

    C

    H3 C

    O-H

    N

    C N++-

    - Step 2: Proton transfer gives thecyanohydrin and regenerates cyanide ion

    nucleophile.

  • 8/7/2019 8.0 Gugus Karbonil

    27/64

    Cyanohydrins

    Acid-catalyzed dehydration gives an alkene.

    Prope e itrile

    (Acrylo itrile)

    +

    acidcataly t

    2- ydro ypropa e itrile

    (Acetaldehyde cya ohydri )

    CH3 CHC N NCH2 = CHC H2 O

    OH

    CHC

    OH

    N 2 H2Ni

    OH

    CHCH2 NH2

    2-Am i o- -phe yletha ol(racem ic)

    +

    Be zaldehydecya ohydri

    (racemic)

    Catalytic reduction of the cyano group gives a 1ramine.

  • 8/7/2019 8.0 Gugus Karbonil

    28/64

    Wittig Reaction

    The Wittig reaction is a very versatilesynthetic method for the synthesis ofalkenes from aldehydes and ketones.

    Tri enyl-o ine o i e

    Met ylene-cyclo e ane

    A o oniumyl i e

    ++-+

    CH2 Ph3 P= OPh3 P-CH2

    Cyclo e anone

    O

  • 8/7/2019 8.0 Gugus Karbonil

    29/64

    Phosphonium YlidesPhosphonium ylides are formed in two steps:

    Step 1: Nucleophilic displacement of iodine bytriphenylphosphine.

    Ph3P CH3-I Ph3P-CH3 I

    Triphenylphosphine

    ++

    2

    Methyltriphenylphosphoniumiodide(analkyltriphenylphosphinesalt)

    CH3CH2CH2CH2 Li + H-CH2 -PPh3 I

    CH2 -PPh3CH3CH2CH2CH3 LiI

    phosphoniumylide

    Butane

    Butyllithium

    +++

    ++

    Step 2: Treatment of the phosphonium salt witha very strong base, such as BuLi, NaH, or NaNH2

  • 8/7/2019 8.0 Gugus Karbonil

    30/64

    Wittig Reaction Phosphonium ylides react with aldehydes and

    ketones to give alkenes. Step 1: Nucleophilic addition of the ylide to

    the electrophilic carbonyl carbon.CR2O

    CH2Ph3 PCH2

    -:O C

    R2

    Ph3 P

    O CR2

    Ph3 P CH2-+

    An o a o etane

    +

    A etaine

    CH2

    O CR2

    Ph 3 PPh 3 P= O R2 C= CH2

    An al ene

    +

    Tri enyl o ine

    o ide

    - Step 2: Decomposition of the oxaphosphatane.

  • 8/7/2019 8.0 Gugus Karbonil

    31/64

    Wittig ReactionExamples:Examples:

    O Ph3

    P + Ph3 P=O

    2-Methyl-2-heptene

    +

    Acetone

    HPh

    O

    Ph3P Ph Ph Ph3 P= O

    Phenyl-

    cet l ehy e

    + +

    (Z)- -Phe l- -

    b t e e

    (87%)

    (E)- -Phe l- -

    b t e e

    (1 %)

    +

    HPh

    O

    + OEtPh3 P

    O

    PhOEt

    O

    Ph3 P= O

    Ethyl (E)-4-phe yl-2-b te oate(only the E isomerisormed)

    +

    Phe yl-acetaldehyde

  • 8/7/2019 8.0 Gugus Karbonil

    32/64

    Wittig Reaction Some Wittig reactions are Z selective, others

    are E selective. Wittig reagents with an anion-stabilizing

    group, such as a carbonyl group, adjacent tothe negative charge are generally E selective.

    OEtPh3 P

    O

    OEtPh3 P

    O

    Resonan e cont ibutingst uctu es fo anylidestabili ed byanadjacent ca bonylg oup

    Wittig reagents without an anion-stabilizinggroup are generally Z selective.

  • 8/7/2019 8.0 Gugus Karbonil

    33/64

    Wittig Reaction

    Horner-Emmons-Wadsworth modification Uses a phosphonoester.

    Br-CH2 -C-OEt

    O

    (MeO)3PBr-CH2-C-R

    O

    (MeO) 2P-CH2-C-R

    OO

    (MeO)2P-CH2-C-OEt

    OO

    MeBr

    MeBranE-bromoester

    anE-bromoketone

    +

    +

    AnE-phosphonoester

    AnE-phosphonoketone

    Trimethyl-phosphite

  • 8/7/2019 8.0 Gugus Karbonil

    34/64

    Wittig Reaction

    Phosphonoesters are prepared bysuccessive SN2 reactions.

    ( Me O) 3 P CH2 - C-OEO

    Br

    CH 3 -O- P-CH2 - C-OE

    O

    OMe

    OMe

    Br

    ( MeO ) 2 P-CH2 - C- OE

    OO

    MeBr

    +

    +

    SN2

    SN2

    AnE-pho sph on oester

  • 8/7/2019 8.0 Gugus Karbonil

    35/64

    Wittig Reaction Treatment of a phosphonoester with a strong

    base followed by an aldehyde or ketone givesan alkene.

    A particular value of using a phosphonoester-stabilized anion is that they are almostexclusively E selective.

    ( MeO) 2 P-C 2 -C- OEt

    OO

    O

    H

    OEt

    O

    MeO-P- O-

    O

    OMe

    1. strongbas e

    2 .O n ly th e Eiso m e r

    is formed

    +

    D im ethy lpho sp hate

    an ion

  • 8/7/2019 8.0 Gugus Karbonil

    36/64

    Addition of H2O

    Addition of water (hydration) to the carbonylgroup of an aldehyde or ketone gives a geminaldiol, commonly referred to a gem-diol. A gem-diol is also referred to as a hydrate.

    C O + H2 O C

    OH

    OH

    Carbonyl groupof an aldehyde

    or ketone

    A hydrate(a gem-diol)

    acid orbase

  • 8/7/2019 8.0 Gugus Karbonil

    37/64

    Addition of H2O

    When formaldehyde is dissolved in water at 20rC,the carbonyl group is more than 99% hydrated.

    H

    H

    O H2 O+

    Formaldehyde

    H

    HOH

    OH

    Formaldehydehydrate(>99%)

    O H2 O+

    2,2-Propanediol

    (0.1%)

    Acetone(99.9%)

    OH

    OH

    The equilibrium concentration of a hydratedketone is considerably smaller.

  • 8/7/2019 8.0 Gugus Karbonil

    38/64

    Addition of Alcohols

    Addition of one molecule of alcohol to theC=O group of an aldehyde or ketone givesa hemiacetal.

    Hemiacetal:Hemiacetal: A molecule containing an -OHand an -OR or -OAr bonded to the samecarbon.

    O H-O t OH

    O t+

    aci or

    base

    he iacetal

  • 8/7/2019 8.0 Gugus Karbonil

    39/64

    Addition of Alcohols

    Hemiacetals are only minor components of anequilibrium mixture, except where a five- orsix-membered ring can form.

    (S)-4- y ro y entanal Cyclic emiacetal(majorformsresent at equilibrium)

    OH

    H

    O

    O OH O OH+

    41 14 14

    OH

    OH

    OH

    HO

    H

    OOH

    O

    OH

    HO

    HO

    H2 OH

    OH

    HO

    H2 OH

    O

    OH

    HO OH1

    2

    3

    6

    6

    12

    anomeric

    carbon

    FAnomerofD -glucose

    cyclic hemiacetal

    (pr domin t s

    t quilibrium)

    E Anomerof

    D -glucose cyclic

    hemiacetal

    +

    4

    5

    D-Glucose(op n h in form)

    123

    45

    3

    4 5

    6

  • 8/7/2019 8.0 Gugus Karbonil

    40/64

    Addition of Alcohols

    At equilibrium, the b anomer of glucosepredominates because the -OH group on theanomeric carbon is equatorial.

    OOH

    HO

    OH

    HOO

    OH

    OH

    HO

    HO

    CH2 OH

    OHO

    HO

    HO

    OH

    O

    OH

    HO

    HO

    CH2 OH

    OH

    12

    34 5

    6

    anomeric

    car on

    FAnomer

    anomeric

    car on

    132

    4 56

    (eq atorial)

    123

    45

    6

    anomericcar on

    Anomer

    anomericcar on

    13

    2

    4 56

    (axial)

    re rawasac air

    conformation

    re rawasac air

    conformation

    OH

    OH

  • 8/7/2019 8.0 Gugus Karbonil

    41/64

    Addition of Alcohols Formation of a hemiacetal is base catalyzed

    Step 1: Proton transfer from HOR gives analkoxide.

    B - H O B H - O+ +

    fas tandreversible

    H3 - - H3

    O:O-

    O:

    H3 - - H3

    O

    +

    Step 2: Attack of RO- on the carbonyl carbon.

  • 8/7/2019 8.0 Gugus Karbonil

    42/64

    Addition of Alcohols

    Step 3: Proton transfer from the alcohol toO- gives the hemiacetal and generates a newbase catalyst.

    O:

    CH3 -C-CH3

    OR

    H OR

    OR

    OH

    CH3 -C-CH3-

    OR++

  • 8/7/2019 8.0 Gugus Karbonil

    43/64

    Addition of Alcohols

    Formation of a hemiacetal is also acid catalyzed.Step 1: Proton transfer to the carbonyl oxygen.

    O

    CH3-C-CH3 H-A

    O

    CH3-C-CH3

    H

    A

    -

    +

    + +

    fastandreversi le

    O

    CH3 -C-CH3

    H

    H-O- CH3 -C-CH3

    O-H

    O

    H

    ++

    +

    Step 2: Attack of ROH on the carbonyl carbon.

  • 8/7/2019 8.0 Gugus Karbonil

    44/64

    Addition of Alcohols

    Step 3: Proton transfer from the oxonium ion toA- gives the hemiacetal and generates anew acid catalyst.

    RH

    CH3 -C-CH3

    O

    OH

    OR

    OH

    CH3 -C-CH3 H-A

    A-

    +

    +

  • 8/7/2019 8.0 Gugus Karbonil

    45/64

    Addition of Alcohols

    Hemiacetals react with alcohols toform acetals.

    Acetal:Acetal: A molecule containing two -OR or -OAr groups bonded to the same carbon.

    OH

    OE

    H OEH

    +OE

    OE

    H2O

    Ad iethyl acetal

    +

    Ahemiacetal

    +

  • 8/7/2019 8.0 Gugus Karbonil

    46/64

    Addition of AlcoholsStep 1: Proton transfer from HA givesoxonium ion.

    HO

    R-C-OCH3

    H

    H A

    HHO

    H

    R-C-OCH3 A:-

    +

    Anoxoniumion

    +

    +

    R-C OCH3

    H

    OHH

    H

    R-C OCH3 R-C

    H

    OCH3 H2 O+

    A re onance- tabili cation

    ++

    +

    Step 2: Loss of water gives resonance-stabilized cation.

  • 8/7/2019 8.0 Gugus Karbonil

    47/64

    Addition of AlcoholsStep 3: Reaction of the cation with methanol gives

    the conjugate acid of the acetal.

    CH3 -OH

    H

    R-C OCH3 R-C OCH3

    H

    OCH

    3H

    A rotonate acetal

    ++

    +

    A:-

    R-C OCH3

    H

    OCH

    3H OCH3

    H

    R-C-OCH3 H-A+(4)

    Anacetal

    +

    +

    Step 4: Proton transfer to A- gives the acetal and

    generates a replacement acid catalyst.

  • 8/7/2019 8.0 Gugus Karbonil

    48/64

    Addition of Alcohols

    With ethylene glycol and other glycols, theproduct is a five-membered cyclic acetal.

    +H+HO

    OHOO

    O

    Cyclic acetal

    + H2 O

  • 8/7/2019 8.0 Gugus Karbonil

    49/64

    Dean-Stark Trap

  • 8/7/2019 8.0 Gugus Karbonil

    50/64

    Acetals as Protecting Groups

    Suppose you want to run the Grignardreaction between these compounds.

    5- ydroxy-5-phenylpentanal(racemic)

    4- romobutanalenzaldehyde

    ??+

    H

    O

    H

    O

    H

    OH O

    Br

  • 8/7/2019 8.0 Gugus Karbonil

    51/64

    Acetals as Protecting Groups The Grignard reagent prepared from 4-

    bromobutanal will self-destruct! To avoid this: First protect the -CHO group as an acetal.

    HBr

    A li et l

    +H

    +

    H2H

    H+

    Br

    Br1 . Mg ethe r

    2 . C6 H CH

    -Mg Br

    +

    Ahir l m gnesium lkoxide(producedasaracemicmixture)

    Then do the Grignard reaction.

    Hydrolysis (not shown) gives the target molecule.

  • 8/7/2019 8.0 Gugus Karbonil

    52/64

    Acetals as Protecting Groups

    Tetrahydropyranyl (THP) protecting group.

    RCH 2 OH +

    OO RCH2 O

    Di ydro yran Atetra ydro yranylet er

    H+

    THPgro

    The THP group is an acetal and,therefore, stable to neutral and basicsolutions, and to most oxidizing andreducing agents.

    It is removed by acid-catalyzedhydrolysis.

  • 8/7/2019 8.0 Gugus Karbonil

    53/64

    Addition of Nitrogen Nucleophiles

    Ammonia, 1r aliphatic amines, and 1r aromaticamines react with the C=O group of aldehydesand ketones to give imines (Schiff bases).

    CH3 CH H2 NH

    +

    CH3 C H =N H2 O+ +

    Acet l e e Aniline Ani ine(a Schi base)

    O

    Ani ine(a Schi base)

    AmmoniaC clohexanone

    ++ N H3 H2 OO N H

    H+

  • 8/7/2019 8.0 Gugus Karbonil

    54/64

    Addition of Nitrogen Nucleophiles

    Formation of an imine occurs in two steps:Step 1: Carbonyl addition followed by protontransfer.

    C

    O

    H2 N-R

    H

    H

    C

    O:-

    N-R

    OH

    N-R

    H

    C+ +

    O H

    H

    H H

    C

    OH

    N-R N-R

    H

    C

    OHH

    OH

    H

    C N-R OH

    H

    HA i mi e

    +

    +

    ++

    ++ H2 O

    Step 2: Loss of H2O and proton transfer

  • 8/7/2019 8.0 Gugus Karbonil

    55/64

    Addition of Nitrogen Nucleophiles

    A value of imines is that the carbon-nitrogendouble bond can be reduced to a carbon-nitrogen single bond.

    +

    Dicyclohexylamine

    Cyclohexanone

    (Animine)

    Cyclohexylamine

    O

    N NH

    -H2 O

    H2 / N i

    H+H 2N

  • 8/7/2019 8.0 Gugus Karbonil

    56/64

    Addition of Nitrogen Nucleophiles

    Rhodopsin (visual purple) is the imineformed in the eye between 11-cis-retinal

    (vitamin A aldehyde) and the protein opsin.

    1 1

    1 2

    11-cis-RetinalRhodopsin

    (Visualpurple)

    H2 N-op n

    H N-op nH O

    +

  • 8/7/2019 8.0 Gugus Karbonil

    57/64

    Addition of Nitrogen Nucleophiles

    Secondary amines react with the C=O group ofaldehydes and ketones to form enamines.

    The mechanism of enamine formation involvesformation of a tetrahedral carbonyl additioncompound followed by its acid-catalyzeddehydration.

    O H-NH

    +

    N H2

    O

    An enaminePi eri ine(aecondar amine)

    ++

    C clohexanone

  • 8/7/2019 8.0 Gugus Karbonil

    58/64

    Addition of Nitrogen Nucleophiles

    The carbonyl groups of aldehydes and ketonesreact with hydrazine in a manner similar to their

    reactions with 1r amines.

    O H2 NNH2 NNH2 H2 O+

    Hydrazine

    +

    A hydrazone

    H2 N NHCNH2

    H2 N OH

    H2N NH

    H2N NH NO2

    O2 N

    Reagen t,H2N-R

    Hydro ylam ine O ime

    Phenylhydrazine

    2,4-D initrophenyl-hydrazine

    S emicar azide

    2,4-D initrop henylhydrazone

    Semicar azone

    NameofDeri ati e FormedNameofReagen t

    Phenylhydrazone

    O

  • 8/7/2019 8.0 Gugus Karbonil

    59/64

    Acidity ofE-Hydrogens

    Hydrogens alpha to a

    carbonyl group are more

    acidic than hydrogens ofalkanes, alkenes, and

    alkynes but less acidic

    than the hydroxyl

    hydrogen of alcohols.

    CH3

    CH2 -H

    CH3 CCH2 -H

    CH2 = CH-H

    CH3 CH2 - H

    CH3 C C-H

    TypeofBond pKa

    16

    20

    25

    44

    51

  • 8/7/2019 8.0 Gugus Karbonil

    60/64

    Acidity ofE-Hydrogens

    E-Hydrogens are more acidic becausethe enolate anion is stabilized by:

    1. Delocalization of its negative charge.

    2. The electron-withdrawing inductive effectof the adjacent electronegative oxygen.

    CH3 -C-CH2 -H

    O

    :A-

    O

    CH3 -C CH2

    O-

    CH3 -C= CH2 H-A

    Re onance- ta ilize enolate anion

    + +

  • 8/7/2019 8.0 Gugus Karbonil

    61/64

    Keto-Enol Tautomerism

    Protonation of the enolate anion on oxygen gives

    the enol form; protonation on carbon gives the keto

    form.

    Enolateanion

    Enol formKeto form

    -O

    CH3 -C-CH2 CH3 -C=CH2

    CH3 -C=CH2

    H-A

    CH3 -C-CH3 +A-

    A- +

    H-A OH

    O-

    O

  • 8/7/2019 8.0 Gugus Karbonil

    62/64

    Keto-Enol Tautomerism

    Acid-catalyzed equilibration of keto and enoltautomers occurs in two steps.

    Step 1: Proton transfer to the carbonyl oxygen.

    Step 2: Proton transfer to the base A-.

    O

    CH3 -C-CH3 H-A

    O

    CH3 -C-CH3

    H

    A-

    +

    +

    +

    Keto form

    The conjugate aciofthe etone

    fa t and

    rever i le

    O

    CH3 -C-CH2 -H

    H

    :A-

    OH

    CH3 -C=CH2 H-A

    nol form

    +

    +

    low+

  • 8/7/2019 8.0 Gugus Karbonil

    63/64

    Keto-Enol Tautomerism

    Keto-enol

    equilibria for

    simple

    aldehydes andketones lie far

    toward the keto

    form.

    OH

    O

    O

    CH 3 CH CH2 = CH

    CH 3 CCH3

    Keto form Enol form

    % Enol at

    Equilibrium

    6 10-5

    OH

    CH3 C = C H2 6 10-7

    O

    O OH

    OH

    1 10-6

    4 10-5

  • 8/7/2019 8.0 Gugus Karbonil

    64/64

    Keto-Enol Tautomerism

    For some molecules, the enol is the major form

    present at equilibrium:

    ForF-diketones, the enol is stabilized by conjugation of

    the pi system of the carbon-carbon double bond and the

    carbonyl group.

    For acyclic F-diketones, the enol is further stabilized by

    hydrogen bonding.