7. Noise Pada Siskom1

20
Modul #07 TE3113 TE3113 SISTEM KOMUNIKASI 1 SISTEM KOMUNIKASI 1 NOISE PADA SISKOM TE-29-02 TE-29-02 Program Studi S1 Teknik Telekomunikasi Departemen Teknik Elektro - Sekolah Tinggi Teknologi Telkom Bandung – 2007

description

materi noise

Transcript of 7. Noise Pada Siskom1

  • Modul #07

    TE3113 TE3113 SISTEM KOMUNIKASI 1SISTEM KOMUNIKASI 1

    NOISEPADA SISKOM

    TE-29-02TE-29-02Program Studi S1 Teknik Telekomunikasi

    Departemen Teknik Elektro - Sekolah Tinggi Teknologi Telkomp gg gBandung 2007

  • Model Komunikasi Radio

    Blah blah blah bl ah

    )(trPEMANCAR (TX) PENERIMA (RX)

    )(tsi)(thc

    )(tr

    )(tnSUMBER TUJUAN

    2Modul 07 - Siskom I - Noise pada Siskom

  • Model Sinyal TerimaM d l th i d i l Model the received signal

    )(thc)(tsi )(tr )()()()( tnthtstr i +=)(c)(i)(tn

    )(

    AWGN Additi Whit G i N i

    )()()()( tnthtstr ci +

    Si lif th d l

    AWGN = Additive White Gausian Noise

    Simplify the model:Received signal in AWGN

    )(tn

    )(tr)(tsiIdeal channels

    )()( tthc = )()()( tntstr i +=)(tn

    AWGN3Modul 07 - Siskom I - Noise pada Siskom

  • Klasifikasi Noise Noise/Derau sebagai unsur pengganggu yang hampir selalu Noise/Derau sebagai unsur pengganggu yang hampir selalu

    terlibat dalam Siskom memerlukan pemodelan yangrepresentative untuk memudahkan keperluan analisis bagi

    t k lit t ki j Si kpenentuan kualitas ataupun kinerja Siskom. Klasifikasi noise berdasarkan sumbernya :

    Dari luar systemy Dari dalam system (umumnya paling dominan)

    Klasifikasi noise berdasarkan equivalensi dengan suhu: Thermal-Noise Non Thermal-Noise

    Klasifikasi noise berdasarkan model matematis/statistic : Klasifikasi noise berdasarkan model matematis/statistic : Gaussian Noise White noise White Gaussian Noise

    Modul 07 - Siskom I - Noise pada Siskom 4

  • Gaussian Noisen1(t) [volt]

    n3(t) [volt]

    tn2(t) [volt]

    t

    f ngsi distrib si Ga ss

    t

    1 fungsi distribusi Gauss : 2n

    607,022

    v1 2n2n2

    nNn e2

    1)v(f)v(f ==

    Modul 07 - Siskom I - Noise pada Siskom 5V0=n n+

  • Gaussian Noise dimana: n = standar deviasi, dan mean = 0

    == 1)()( dvvfdvvf Nn

    )]([ tNVARn = akar daya rata-rata = r m s/eff Tegangan r.m.s/eff. dapat diukur dengan TRUE-RMS

    )]([n = r.m.s/eff.

    VOLT-METER, yang dapat berupa sinyal apa saja, termasuk NOISE.

    Tapi Voltmeter biasa hanya mengukur tegangan rata rata Tapi Voltmeter biasa hanya mengukur tegangan rata-rata sin/cos.

    Modul 07 - Siskom I - Noise pada Siskom 6

  • White Noise

    Its PSD is flat, hence, it is called white noise.

    [ /H ][w/Hz]

    Power spectral density

    Autocorrelation

    Probability density function

    Autocorrelation function

    7Modul 07 - Siskom I - Noise pada Siskom

  • AWGN: Additive White Gausian Noise Memiliki sifat gabungan antara Gaussian-noise dan white

    noise Berupa noise dalam/thermal noise : Berupa noise dalam/thermal noise :

    (f)NkT ==No (f)NkTNo ==222

    D bl id d

    Si l id d

    R t d i i k i l i d th l

    Double sided

    KJk = /2310.38,1Boltzman konst.Single sided

    Rapat daya noise mempunyai ekuivalensi dengan thermal. Sehingga secara praktis dapat juga noise dinyatakan dalam thermal (ekivalensinya).( y )

    Modul 07 - Siskom I - Noise pada Siskom 8

  • Classification of signals

    Deterministic and random signalsDeterministic signal: No uncertainty with

    respect to the signal value at any time.Random signal: Some degree of uncertainty

    in signal values before it actually occurs.Thermal noise in electronic circ its d e to the Thermal noise in electronic circuits due to the random movement of electrons

    Reflection of radio waves from different layers of yionosphere

    9Modul 07 - Siskom I - Noise pada Siskom

  • Classification of signals Periodic and non-periodic signals

    A non-periodic signalA periodic signal

    Analog and discrete signalsp g

    A discrete signal

    Analog signals10Modul 07 - Siskom I - Noise pada Siskom

  • Classification of signals ..

    Energy and power signals A signal is an energy signal if, and only if, it has

    nonzero but finite energy for all time:

    A signal is a power signal if, and only if, it has finite but nonzero power for all time:

    General rule: Periodic and random signals are power signals. Signals that are both deterministic and non-periodic are energy signals.

    11Modul 07 - Siskom I - Noise pada Siskom

  • Random process

    A random process is a collection of time functions, or signals, corresponding to various outcomes of a random experiment For each outcome there exists arandom experiment. For each outcome, there exists a deterministic function, which is called a sample function or a realization.

    Random variables

    m

    b

    e

    r

    Sample functionsor realizationsR

    e

    a

    l

    n

    u

    m

    or realizations(deterministic

    function)

    time (t)time (t)

    12Modul 07 - Siskom I - Noise pada Siskom

  • Random Sequences and Random Processes

    13Modul 07 - Siskom I - Noise pada Siskom

  • Specifying a Random Process A random process is defined by all its joint CDFs

    for all possible sets of sample times

    t0 t1t2

    tn

    14Modul 07 - Siskom I - Noise pada Siskom

  • Stationarity If time-shifts (any value T) do not affect its joint CDF If time-shifts (any value T) do not affect its joint CDF

    t tn+T

    t0 t1t2

    tnt0 + T

    t1+T t2+T

    n

    15Modul 07 - Siskom I - Noise pada Siskom

  • Random process Strictly stationary: If none of the statistics of the Strictly stationary: If none of the statistics of the

    random process are affected by a shift in the time origin.Wid t ti (WSS) If th d Wide sense stationary (WSS): If the mean and autocorrelation function do not change with a shift in the origin time.

    Cyclostationary: If the mean and autocorrelation function are periodic in time.

    Ergodic process: A random process is ergodic in Ergodic process: A random process is ergodic in mean and autocorrelation, if

    dand

    , respectively., respectively.

    16Modul 07 - Siskom I - Noise pada Siskom

  • ErgodicityTi E bl Time averages = Ensemble averages

    [i.e. ensemble averages like mean/autocorrelation can be computed as time-averages over a single realization of the random process]A d di i d t l ti (lik ) if A random process: ergodic in mean and autocorrelation (like w.s.s.) if

    and

    17Modul 07 - Siskom I - Noise pada Siskom

  • AutocorrelationA t l ti f i l Autocorrelation of an energy signal

    Autocorrelation of a power signal

    For a periodic signal:p g

    Autocorrelation of a random signal Autocorrelation of a random signal

    For a WSS process: p

    18Modul 07 - Siskom I - Noise pada Siskom

  • Spectral density

    Energy signals:

    Energy spectral density (ESD):

    Power signals:

    Power spectral density (PSD):

    Random process: Power spectral density (PSD): p y ( )

    19Modul 07 - Siskom I - Noise pada Siskom

  • Properties of an autocorrelation functionfunction

    For real-valued (and WSS in case of For real valued (and WSS in case of random signals):

    1 Autocorrelation and spectral density form1. Autocorrelation and spectral density form a Fourier transform pair.

    2 Autocorrelation is symmetric around zero2. Autocorrelation is symmetric around zero.3. Its maximum value occurs at the origin.4 Its value at the origin is equal to the4. Its value at the origin is equal to the

    average power or energy.

    20Modul 07 - Siskom I - Noise pada Siskom