10-kesetimbangan-heterogen

45
KESETIMBANGAN HETEROGEN Referensi : “Prinsip-prinsip Kimia Modern” Penulis : Oxtoby, Gillis, Nachtrieb

description

10-kesetimbangan-heterogen

Transcript of 10-kesetimbangan-heterogen

Page 1: 10-kesetimbangan-heterogen

KESETIMBANGAN HETEROGENReferensi : “Prinsip-prinsip Kimia Modern”Penulis : Oxtoby, Gillis, Nachtrieb

Page 2: 10-kesetimbangan-heterogen

Fenomena

Kesetimbangan fasa antara air dalam bentuk cair dan dalam bentuk uapH2O(l) H2O(g)

Kesetimbangan antara iosin padat dan iodin yang larut dalam airI2(s) I2(aq)

Penguraian kalsium karbonatCaCO3(s) CaO(s) + CO2(g)

Page 3: 10-kesetimbangan-heterogen

1. Hukum Aksi Massa Untuk Reaksi Heterogen: Konsep Aktivitas

Page 4: 10-kesetimbangan-heterogen

Jika satu atau lebih reaktan atau produk adalah zat padat atau cair dalam wujud murninya, prosedurnya menjadi kurang jelas, karena “konsentrasi” tidak mempunyai arti apabila diterapkan pada spesies murni. Konsep ini dapat dipecahkan dengan konsep “aktivitas”, yang merupakan cara praktis untuk membandingkan sifat-sifat suatu zat dalam keadaan termodinamika umum dengan sifat-sifatnya dalam keadaan acuan yang dipilih secara khusus

Page 5: 10-kesetimbangan-heterogen

Konsep aktivitas diperkenalkan dengan meninjau energi bebas Gibbs suatu sistem terhadap tekanan (jika suatu zat murni) atau terhadap komposisi (jika suatu larutan), tanpa memandang fasa dari sistem tersebut

Perubahan energi bebas Gibbs bila gas dibawa dari keadaan acuan Pref ke tekanan P diberikan oleh :

∆G = nRT ln(P/Pref) = nRT ln P

Page 6: 10-kesetimbangan-heterogen

Untuk itu kita dapat mendefinisikan aktivitas dengan persamaan

∆G = nRT ln(a/aref) = nRT ln a

dimana aref adalah aktivitas dalam keadaan acuan yang dipilih dan a adalah aktivitas dalam keadaan temodinamika umum. Aktivitas dalam keadaan acuan selalu dinyatakan dengan nilai 1

Hal ini berarti perubahan energi bebas Gibbs pada waktu pengambilan sistem dari keadaan acuan ke suatu keadaan termodinamika umum ditentukan oleh aktivitas a dalam keadaan umum

Page 7: 10-kesetimbangan-heterogen

Aktivitas ini dihubungkan terhadap tekanan atau konsentrasi oleh koefisien aktivitas (γ) yang didefinisikan dengan persamaan

a = γ P

Pref Nilai γ untuk gas ideal = 1 Aktivitas suatu gas ideal adalah nisbah

antara tekanannya dengan tekanan standar tertentu

Page 8: 10-kesetimbangan-heterogen

Aktivitas untuk larutan

a = γ c

cref Koefisien aktivitas γ sama dengan 1 pada

keadaan acuan, yang dipilih sebagai larutan ideal dengan konsentrasi yang sesuai

Keadaan acuan dipilih larutan ideal (cref) pada 1 M

Page 9: 10-kesetimbangan-heterogen

Keadaan acuan untuk zat padat dan cair murni dipilih berbentuk stabil pada 1 atm

Zat murni dalam keadaan acuannya memiliki nilai aktivitas sebesar 1

Dengan keadaan acuan didefinisikan, koefisien aktivitas γ dapat ditentukan dari P-V-T hasil eksperimen dan data kalorimetri dengan percobaan

Page 10: 10-kesetimbangan-heterogen

Tetapan kesetimbangan K tanpa memperhatikan fasa dari setiap produk dan reaktan

acC . adD = K

aaA . abB Persamaan-persamaan diatas

menghasilkan hukum aksi massa

Page 11: 10-kesetimbangan-heterogen

Bentuk umum hukum aksi massa sekarang dapat disebutkan:

1. Gas ikut serta dalam persamaan kesetimbangan sebagai tekanan parsial, dalam atmosfer

2. Spesies yang larut masuk sebagai konsentrasi, dalam mol per liter

3. Zat padat murni dan zat cair murni tidak muncul dalam persamaan kesetimbangan, demikian pula dengan pelarutnya yang akan ikut serta dalam reaksi kimia, asalkan larutan tersebut encer

Page 12: 10-kesetimbangan-heterogen

4. Tekanan parsial dan konsentrasi produk muncul di bagian pembilang, dan tekanan parsial dan konsentrasi reaktan di bagian penyebut, masing-masing dipangkatkan dengan koefisien dalam persamaan kimia yang balans

Page 13: 10-kesetimbangan-heterogen

Rumus kesetimbangan yang digunakan disini mempunyai kecermatan sekitar 5% jika tekanan gas tidak melebihi beberapa atmosfer dan konsentrasi pelarut tidak melebihi 0.1 M.

Faktor koreksi bisa lebih besar dari 5 sesuai kondisi dan sifat zat

Page 14: 10-kesetimbangan-heterogen

2. Distribusi Spesies Tunggal Di Antara Fasa yang tidak dapat Tercampurkan: Proses Ekstraksi dan Proses Pemisahan

Page 15: 10-kesetimbangan-heterogen

Immiscible berarti saling ta terlarutkan Larutan-larutan terpisah menjadi dua

fasa atau lebih karena perbedaan kerapatannya

Zat terlarut akan terdistribusi ke dalam setiap fasa

Tetapan kesetimbangannya disebut koefisien partisiI2(aq) I2(CCl4)

[I2]CCl4 = K

[I2]aq

Page 16: 10-kesetimbangan-heterogen

Proses Ekstraksi

Ekstraksi memanfaatkan pembagian sebuah zat terlarut antara dua pelarut tersebut dari satu pelarut ke pelarut lain

Dapat digunakan sebagai prosedur pemisahan

Page 17: 10-kesetimbangan-heterogen

Pemisahan dengan Kromatografi Kesetimbangan partisi merupakan dasar dari

teknik pemisahan yang disebut kromatografi Kromatografi adalah proses ekstraksi kontinu

dimana spesies terlarut ditukar antara dua fasa. Yang satu, fasa bergerak, berpindah relatif terhadap yang lain, yaitu fasa diam. Nisbah partisi K dari zat terlarut A antara fasa diam dan fasa bergerak adalah [A] diam

= K

[A] bergerak

Page 18: 10-kesetimbangan-heterogen

seiring dengan fasa bergerak yang mengandung zat terlarut melewati fasa diam, molekul zat terlarut bergerak antara kedua fasa. Kesetimbangan sebenarnya tidak pernah benar-benar tercapai karena pergerakan fasa cair secara terus menerus mempertemukan pelarut dengan fasa diam

Makin besar K, makin banyak waktu yang dihabiskan zat terlarut dalam fasa diam dan karena itu, makin lambat pula kemajuannya dalam sistem pemisahan. Zat terlarut dengan nilai K yang berbeda dipisahkan oleh kecepatan perjalannya yang berbeda

Page 19: 10-kesetimbangan-heterogen

Kromatografi kolom menggunakan tabung yang diisi dengan bahan berpori seperti silika gel dimana air teradsorpsi. Air menjadi fasa cair diam. Fasa gerak benzen atau piridin. Jika fraksi mencapai dasar kolom, mereka dipisahkan untuk dianalisis. (lihat gambar 11.3)

Kromatografi Gas-Cair, fasa diam cairan yang diadsorpsi pada zat berpori dengan fasa bergerak gas. Sampel diuapkan dan dilewatkan melalui kolom, terbawa aliran gas lembam seperti helium dan nitrogen. Waktu tinggal dalam kolom tergantung pada koefisien partisi spesies terlarut, lalu dideteksi setelah meninggalkan kolom. (lihat gambar 11.4)

Page 20: 10-kesetimbangan-heterogen

3. Sifat-sifat Kesetimbangan Kelarutan

Page 21: 10-kesetimbangan-heterogen

Sifat-sifat Umum Kesetimbangan Kelarutan

Kesetimbangan larutan merupakan kompromi dinamik dimana kecepatan keluarnya partikel dari fasa pekat sama dengan kecepatan baliknya

Asumsinya bahwa larutan yang berada diatas zat padat yang tidak larut adalah larutan ideal.

Kesetimbangan pelarutan dan pengendapan antara zat padat dan bentuk terlarutnya disebut larutan jenuh

Page 22: 10-kesetimbangan-heterogen

Prinsip Le Chatelier diterapkan pada kesetimbangan ini.

Penambahan pelarut akan membuat konsentrasi zat terlarut dan penambahan zat padat akan mengembalikan keadaan kesetimbangan

Pengambilan pelarut yang sudah jenuh memaksa zat padat mengendap agar konsentrasi tetap

Prinsip ini sering digunakan untuk proses pemurnian zat disebut dengan proses rekristalisasi

Rekristalisasi didasarkan pada prinsip perbedaan kelarutan zat yang diinginkan dan kotorannya.

Page 23: 10-kesetimbangan-heterogen

Dalam rekristalisasi, larutan mulai mengendapkan sebuah senyawa bila larutan tersebut mencapai titik jenuh terhadap senyawa tersebut. Dalam pelarutan, pelarut menyerang zat padat dan mensolvatasinya pada tingkat partikel individual. Dalam pengendapan, terjadi kebalikannya: tarik menarik zat terlarut terjadi kembali saat zat terlarut meninggalkan larutan. Sering, tarik menarik zat terlarut-pelarut tetap berlangsung selama proses pengendapan dan pelarut bergabung sendiri ke zat padat.

Page 24: 10-kesetimbangan-heterogen

Kelarutan Zat Padat Ionik

Garam menunjukkan interval kelarutan yang besar dalam air.

Kebanyakan reaksi pelarutan untuk zat padat ionik bersifat endotermik, sehingga menurut prinsip Le Chatelier kelarutan naik dengan naiknya suhu

Pelarutan yang bersifat eksoterm menunjukkan sifatyang berlawanan. Lihat gambar 11.7

Dengan mengetahui kelarutan zat ionik, kita dapat memprediksikan jalannya reaksi. Lihat tabel 11.2

Page 25: 10-kesetimbangan-heterogen

4. Kesetimbangan Ionik antara Zat Padat dan Larutan

Page 26: 10-kesetimbangan-heterogen

Jika sebuah zat padat ionik seperti CsCl larut dalam air, maka akan terpecah menjadi ion yang bergerak berjauhan satu dengan yang lain dan menjadi terselubungi oleh molekul air (terhidratasi/terakuasi)CsCl(s) Cs+(aq) + Cl-(aq)

Hal berbeda jika garam perak klorida dilarutkan dalam air. Dimana hanya sebagian kecil yang larutAgCl(s) Ag+ (aq) + Cl-(aq)

Page 27: 10-kesetimbangan-heterogen

Kesetimbangannya mengikuti hukum kesetimbangan heterogen [Ag+]1 [Cl-] 1 = Ksp

Dimana sp berarti hasil kali kelarutan, yang membedakan K sebagai yang mengacu pada pelarutan zat padat ionik yang sedikit larut dalam air

Konsentrasi kedua ion dipangkatkan 1 karena koefisiennya 1 dalam persamaan kimia

Zat padat AgCl tidak mempengaruhi kesetimbagan selama sejumlah zat padat ini tersedia. Jika zat padat tidak ada, kemudian hasil kali kedua konsentrasi ion tidak lagi dipengaruhi oleh rumus hasil kali kelarutan

Page 28: 10-kesetimbangan-heterogen

Kelarutan dan Ksp

Kelarutan molar garam dalam air tidak sama dengan tetapan hasil kali kelarutan, tetapi terdapat hubungan sederhana diantara keduanya

Menghitung Ksp dari kelarutan dan menghitung kelarutan dari Ksp berlaku jika larutan adalah ideal dan jika tidak ada reaksi sampingan yang menurunkan konsentrasi ion-ion setelah mereka masuk ke dalam larutan

Page 29: 10-kesetimbangan-heterogen

5. Pengendapan dan Hasil Kali Kelarutan

Page 30: 10-kesetimbangan-heterogen

Pengendapan dari Larutan

Mencampurkan AgNO3 dengan NaCl, akan membentuk endapan AgCl bila Kuosien reaksi awal (Q0) jika lebih besar dari Ksp. Lihat gambar 11.6

Konsentrasi ion dalam kesetimbangan setelah pencampuran kedua larutan untuk memberikan pengendapan yang paling mudah dihitung dengan menganggap bahwa reaksi pertama-tama berlangsung sempurna (dengan mengkonsumsi satu jenis ion) dan bahwa pelarutan zat padat selanjutnya mengembalikan beberapa senyawa ionik ini ke larutan

Page 31: 10-kesetimbangan-heterogen

Pengaruh Ion yang Sama

Bila NaCl ditambahkan ke dalam larutan jenuh AgCl, konsentrasi Cl- akan meningkat. Besarnya Q0 akan melebihi Ksp AgCl dan AgCl akan mengendap sampai konsentrasi Ag+(aq) dan Cl-(aq) berkurang sehingga sesuai dengan rumus hasil kali kelarutan.

Hal ini menunjukkan penurunan konsentrasi Ag+ bila dibandingkan dengan konsentrasi Ag+

dalam air murni dengan volume yang sama. Adanya kelebihan Cl- menurunkan konsentrasi Ag+ dan menurunkan kelarutan AgCl

Page 32: 10-kesetimbangan-heterogen

Keadaan yang sama akan terjadi bila larutan mengalami penambahan larutan AgNO3. Kelarutan AgCl akan menurun sebab konsentrasi terjadi peningkatan konsentrasi Ag+ dan menurunkan konsentrasi Cl- untuk mempertahankan kesetimbangan

Ini disebut sebagai efek ion yang sama: jika larutan dan garam padat yang dilarutkan di dalamnya mempunyai ion yang sama, maka kelarutan garam akan berkurang. Lihat gambar 11.11

Page 33: 10-kesetimbangan-heterogen

6. Pengaruh pH terhadap Kelarutan

Page 34: 10-kesetimbangan-heterogen

Kelarutan Hidroksida

Beberapa zat hanya sedikit larut dalam air, tetapi sangat larut dalam larutan asam. Sebagai contohCaCO3(s) + H3O+(aq) Ca2+(aq) + HCO3

-(aq) + H2O(l)

Pengaruh langsung pH terhadap kelarutan berlangsung dengan logam hidroksidaZn(OH)2(s) Zn2+(aq) + OH-(aq) Ksp = 4.5 x 10-17

jika larutan lebih asam, konsentrasi ion OH- akan berkurang dan kenaikan konsentrasi Zn2+. Jadi, seng hidroksida lebih larut dalam larutan asam

Page 35: 10-kesetimbangan-heterogen

Kelarutan Garam Basa

Kelarutan garam dimana anionnya adalah basa lemah atau basa kuat yang berbeda juga dipengaruhi oleh pH. Sebagai contohCaF2(s) Ca2+(aq) + 2 F-(aq) Ksp = 3.9 x 10-11

Jika larutan dibuat lebih asam, maka F- akan bereaksi dengan ion hidroniumH3O+(aq) + F-(aq) HF(aq) + H2O(l)

Sehingga konsentrasi F- berkurang sehingga konsentrasi akan naik untuk mempertahankan kesetimbangan, dan kelarutan garam CaF2 naik dalam larutan asam

Page 36: 10-kesetimbangan-heterogen

Kelarutan garam asam hanya akan terpangaruh sedikit oleh penurunan pH. Penyebabnya adalah bahwa HCl adalah asam kuat, sehingga Cl- tidak efektif sebagai basa. ReaksiCl-(aq) + H3O-(aq) HCl(aq) + H2O(l)

berlangsung pada tingkatan yang dapat diabaikan dalam larutan asam

Page 37: 10-kesetimbangan-heterogen

7. Pengendapan Selektif Ion

Page 38: 10-kesetimbangan-heterogen

Pemisahan AgCl dan PbCl2 dapat dilakukan dengan pengendapan selektif ion. Keduanya mempunyai anion yang sama dan perbedaan kelarutan yang besarAgCl(s) Ag+(aq) + Cl-(aq) Ksp = 1.6 x 10-10

PbCl2(s) Pb2+(aq) + 2 Cl-(aq) Ksp = 2.4 x 10-4

PbCl2 jauh lebih larut dari AgCl Lihat gambar 11.13

Page 39: 10-kesetimbangan-heterogen

Dipisahkan dengan mengatur konsentrasi ion hidronium sedemikian rupa sehingga AgCl mengendap, tetapi PbCl2 tetap larut, sehingga padatan AgCl dapat diambil dari larutan campuran

Page 40: 10-kesetimbangan-heterogen

8. Ion Kompleks dan Kelarutan

Page 41: 10-kesetimbangan-heterogen

Banyak ion logam transisi membentuk ion kompleks dalam larutan atau dalam zat padat; ini terdiri dari ion logam yang dikelilingi oleh kelompok anion atau molekul netral yang disebut ligan. Interaksi ini melibatkan pembagian pasangan elektron bebas ion logam pada tiap molekul ligan, yang memberikan ikatan kovalen parsial dengan ligan tersebut.

ion kompleks seperti ini mempunyai warna gelap yang menyolok

Page 42: 10-kesetimbangan-heterogen

Kesetimbangan Ion Kompleks Reaksi ion perak dengan larutan amonia akan

membentuk kompleks perak amonia koordinat gandaAg+(aq) + NH3(aq) Ag(NH3)+(aq) K1 = 2.1 x 103

Ag(NH3)+(aq) + NH3(aq) Ag(NH3)2+(aq) K2 = 8 x 103

Ag+(aq) + 2 NH3(aq) Ag(NH3)2+(aq) Kf = K1K2 = 1.7 x 107

Kf adalah tetapan pembentukan ion kompleks total

Makin besar tetapan pembentukan Kf ion kompleks akan makin stabil, untuk ion dengan jumlah ligan yang sama

Page 43: 10-kesetimbangan-heterogen

Dalam larutan, konsentrasi ion kompleks Ag(NH3)+ dan Ag(NH3)2

+lebih besar dibandingkan bentuk ion logamnya Ag+.

Ion kompleks bekerja dengan tetapan pembentukan

Pembentukan kompleks menaikkan kelarutan Ag+

Page 44: 10-kesetimbangan-heterogen

Keasaman dan Sifat Amfoter Ion Kompleks

Jika dilarutkan dalam air, banyak ion logam menaikkan keasaman larutanFe(H2O)6

3+(aq) + H2O(l) H3O+(aq) + Fe(H2O)5OH2+

(aq)

asam 1 basa 2 asam 2 basa 1

Ka = 7.7 x 10-3

Ion kompleks Fe(H2O)63+ berfungsi sebagai

asam bronsted lowry. Asam yang terbentuk merupakan asam kuat

Ion kompleks juga dapat membentuk asam poliprotik, sehingga juga bersifat amfoter

Page 45: 10-kesetimbangan-heterogen

Thank you fren

Tugas Kesetimbangan Heterogen

Hal 364 – 367 Nomor 3, 15, 17,

19, 21, 23, 27, 29, 33, 39, 41, 43, 45