1. Spektrometer UV Vis

120
Semester ganjil 2020/2021 Y 2 * p Y 1 Y 1 Y 2 Y 3 * Y 4 *

Transcript of 1. Spektrometer UV Vis

Page 1: 1. Spektrometer UV Vis

Semester ganjil 2020/2021

Y2*

pY1Y1

Y2

Y3*

Y4*

Page 2: 1. Spektrometer UV Vis

LINGKUP MATERI:

1. Pengantar Spektrometri

2. Spektrometri UV/VIS

3. Spektrometri IR

4. Spektrometri NMR

5. Spektrometri Massa

6. Spektrometri absorpsi/emisi atom

7. Spektrometri pendar fluor

8. Spektrometri sinar X

2

Page 3: 1. Spektrometer UV Vis

1. Spektrometer UV Vis

3

Page 4: 1. Spektrometer UV Vis

4

1. Spektrometer UV Vis

Page 5: 1. Spektrometer UV Vis

2. Spektrometer IR

5

Page 6: 1. Spektrometer UV Vis

3. Spektrometer NMR

6

Page 7: 1. Spektrometer UV Vis

4. Spektrometer Massa

7

Page 8: 1. Spektrometer UV Vis

5. AAS

8

Page 9: 1. Spektrometer UV Vis

6. SPEKTROMETER SINAR X

9

Page 10: 1. Spektrometer UV Vis

Definisi

1. Spektrometri ?

2. Spektrofotometri ?

3. Spektroskopi ?

4. Spektrometer ?

10

A. Ilmu yang mempelajari interaksiantara gelombang elektromagnetikdengan materi

B. alat ukur untuk mempelajariinteraksi materi-energi

C. Ilmu yang mempelajari metodepengukuran terkait alat-alat untukmengukur interaksi materi-energi

D. Ilmu yang mempelajari teori interaksimateri dengan energi radiasi pada level mikroskopis

Page 11: 1. Spektrometer UV Vis

Interaksi Materi – energi (radiasi)

Suatu bentuk gelombangRadiasi/sinar

Energi,

c

hhE == .

a bc

d

dInteraksi :

❖ absorpsi

❖transmisi

❖ refleksi

❖difraksi

a

Page 12: 1. Spektrometer UV Vis

➢ Absorpsi radiasi oleh materi:

• Transisi tk energi elektronik (UV/VIS)

• Transisi tk energi vibrasi (IR)

• Transisi tk energi rotasi (gel. Mikro)

• Induksi magnet dengan ekspos inti

atau elektron pada medan magnet

(NMR/ESR, Gel radio/mikro)

➢ Emisi radiasi oleh materi :

setelah menyebabkan transisi dalam

ion/molekul/atom, sejumlah energi

dilepaskan kembali ke keadaan dasar.

EMISI

Langsung ke tk dasar

Melalui luminisensi

fluoresensi

fosforesensi

Page 13: 1. Spektrometer UV Vis

13

DAERAH SPEKTRA

RADIASI ELEKTROMAGNETIK

Page 14: 1. Spektrometer UV Vis

Daerah panjang

gelombang

Frekuensi (Hz) Jenis radiasi Transisi Jenis teknik spektrometri

< 0,1 Å > 3 . 1019 sinar gama () Inti Emisi sinar gama

0,1 – 100 Å 3.1019– 3. 1016 Sinar x Electron dalam Serapan, emisi fluoresensi dan

difraksi sinar x

5- 180 nm 6.1016 – 2.1015 UV vakum Electron ikatan Serapan UV vakum

180-780 nm 2.1015- 1. 1012 UV/VIS Electron ikatan Serapan/emisi/

fluoresensi UV/VIS

780 – 3000 nm 4.1014-1.1012 IR Vibrasi/rotasi

molekul

Serapan IR

0,75– 3,75 mm 4.1011-8.1010 Gelombang mikro rotasi Serapan gel. mikro

3 cm 1. 1010 Gelombang mikro spin electron

dalam medan

magnet

Resonansi spin electron (ESR)

0,6-10 m 5.108 - 3.107 Gelombang radio Spin inti dalam

medan magnet

Resonansi magnet inti (NMR)

Daerah spektra dan teknik pengukurannya

Page 15: 1. Spektrometer UV Vis

Hk. Dasar Spektroskopi serapan

PtPoPa

Pr

b

Po = Pt + Pa + Pr

Materi bening, tembus cahaya, maka

Pr ~ 0, sehingga Po = Pt + Pa

Transmitansi, T T = Pt/Po

Dapat dinyatakan dalam %T

T = 0,2 , maka %T = 20

Hk dasar spektroskopi serapan

(Bouger-Lambert-Beer) :

abc

Po

PT −== 10

Page 16: 1. Spektrometer UV Vis

cbaP

PoT

abcPo

PT

..loglog

loglog

==−

−==

Absorbansi, A = -log T, maka

A = a b c Hk. Lambert-Beer

Jika c = mol/L, maka

A = . b. c

adalah koef. Absorptivitas molar

Apa artinya :

A = 0 atau A = 1 ?

%T = 0, atau %T = 50 atau %T = 100 ?

Page 17: 1. Spektrometer UV Vis

II. Spektrometri UV/VIS

Ground state

energiUV/VIS

M*

M

tereksitasi(10-8- 10-9 det.)

Absorpsi UV/Vis Eksitasi/transisi

e bonding

Orbital p, , n

Serapan khas untuk setiap senyawa

Mlk zat org.

Page 18: 1. Spektrometer UV Vis

*

p

n

p

Jenis-jenis transisi:

Page 19: 1. Spektrometer UV Vis

2. Transisi n - *: Seny.Jenuh, e tak berpasangan, energi <, 150 – 250 nm, rendah

Contoh: metanol maks=184nm, =15

3. Transisi n - p*: E kecil, panjang, 200-700 nm

= 10-100

4. Transisi p - p*: Seny.org tak jenuh

= 1000-10.000

Jenis-jenis transisi:

1. Transisi - * : Jauh , energi >, maks kecil

< 150 nm, UV vakum, sukar diamati

Contoh: CH4 C-C, C-H maks = 125 nm

Transisi yang dapat diamati: > 180 nm

terjadi pada senyawa yg mengandung gugus fungsional (kromofor), energi eksitasi rendah

Page 20: 1. Spektrometer UV Vis

2. Pengaruh konjugasi: menyebabkan tk. Energi orbital p* turun, energi <, maks >

(pergeseran batokhromik)

Apa yang dimaksud dengan ikatan terkonjugasi ?

Berikan contoh senyawa terkonjugasi !!Prediksi maks

Dasar : -C=C-C=C- maks= 217 nm

-C=C-C=O maks = 215 nm

> C=C-C=C-C=O

Tambah: 10 nm untuk alkil

12 nm untuk alkil

18 nm untuk dan

30 nm untuk ekstra C=C

5 nm untuk bentuk ekso

Pergeseran :

1. Pengaruh pelarut:

Dalam pelarut polar, transisi n - p*terjadi pada yang lebih pendek (pergeseranbiru/ hipsokhromik)

Dalam pelarut polar, transisi p - p* terjadi pada lebih panjang (pergeseranmerah/ batokhromik)

Page 21: 1. Spektrometer UV Vis

Absorpsi oleh seny. Aromatik:

transisi: p - p*, ada tiga puncak

184 nm --→ = 60.000

204 nm --→ = 7900

256 nm --→ = 200

3. Adanya auksokhrom: pergeseran merah

Auksokhrom: gugus fungsi yang tidak menyerapdi daerah UV tapi dapat menggeser puncak kromofor.

Absorpsi anion anorganik: transisi n - p*

Contoh: nitrat, nitrit, karbonat.

Page 22: 1. Spektrometer UV Vis

INSTRUMENTASI

Spektrofotometer UV/VIS

Page 23: 1. Spektrometer UV Vis

Instrumentasi untuk pengukuran serapan UV/VIS

1. Tabung Nesler

x S-1 S-2 S-3

• Untuk serapan vis/ larutan berwarna

•Membandingkan warna larutan x dengan warna larutan standar yg

diketahui konsentrasinya.

•Pengamatan visual

2. Silinder Hehner

•Kolorimeter visual, visible•Cara tinggi larutan berubah

•Membandingkan warna larutan standar dengan sampel

•Intensitas serapan sampel dan standar sama, sama, b berbeda, maka C sampel

dapat dicari

Page 24: 1. Spektrometer UV Vis

Tabung Nessler

Page 25: 1. Spektrometer UV Vis

Silinder Hehner

Page 26: 1. Spektrometer UV Vis

3. Kolorimeter Dubosq•Kolorimeter visual vis/larutan

berwarna

•Tinggi larutan berubah

•Membandingkan warna larutansampel dengan standar

•Dilengkapi dengan teropong

•A standar=A sampel

standar= sampel

• C sampel= (b.C)standar/b sampel

4. Fotometer filter

Bagan alat

Sumber filter sel detektor read out

Sinar sinar /galvanometer

Page 27: 1. Spektrometer UV Vis

Kolorimeter Dubosq

Page 28: 1. Spektrometer UV Vis
Page 29: 1. Spektrometer UV Vis

a. Sumber sinar: Lampu wolfram/tungstenSyarat sumber sinar:

* Intensitas sinar cukup besar dan stabil

* Pancaran sinar kontinyu (1 daerah )

b. Filter : Untuk mengisolasi daerah spektrum yang diinginkan

<400 400-450

450-500

500-570

570-590

590-620

620-…..

Warna UV ungu biru Biru-hijau

Kuning jingga

Warna komp

Hijau-kuning

kuning jingga biru Biru hijau Hijau-biru

c. Sel/Kuvet:

* Bahan: kaca, plastik, kuarsa

BAGIAN-BAGIAN ALAT FOTOMETER SEL

Page 30: 1. Spektrometer UV Vis

d. Detektor: Fotosel

FeSemi konduktor

(Se)

Lapisan Ag tipis (elektroda pengumpul

+ -

Ke galvanometer

Kelebihan dan kelemahan:

* Kuat, murah

* tidak memerlukan sumber listrik dari luar

* Hanya untuk sinar tampak

* peka pada 550 nm

* Tidak dapat diamplifikasi --- tahanan rendah

* kurang peka untuk cahaya berintensitas rendah

* cepat mengalami kelelahan

arus ‡ intensitas sinar

Page 31: 1. Spektrometer UV Vis

Spektrofotometer

(Spectronic-20)

Page 32: 1. Spektrometer UV Vis
Page 33: 1. Spektrometer UV Vis

Bagan alat spektrofotometer

Sumber sinar monokromator sel detektor rekorder

a. Sumber sinar:

• Lampu wolfram/tungsten--- tampak

• Lampu Deuterium/H2 --- UV- +

H2 Tabung kuarsa

Tekanan rendah

Sinar UV yg dihasilkan: 180-350 nm

Page 34: 1. Spektrometer UV Vis

Mengapa sinar harus monokromatis ???

• mempertinggi kepekaan, karena absorbans terukur maksimum

• penyerapan sinar memenuhi hk L-B lebih baik

b. Monokromator :

alat untuk memilih dengan cara

menguraikan sinar polikromatis menjadi

monokromatis1

12

2

Celah lensa prisma/ lensa celah

masuk kolimator kisi difraksi fokus keluar

Page 35: 1. Spektrometer UV Vis

c. Sel/Kuvet:syarat :

tidak menyerap sinar yang digunakan

Diameter (b) = 1 cm

Volume : 5 mL/ 10 mL

UV: kuarsa

VIS: plastik, gelas/kaca biasa

Pengukuran sampel harus menggunakan blanko

Sel sampel harus “matched” dengan sel blanko

Bagaimana caranya matching kuvet ??

d. Detektor :

Prinsip:

menyerap energi sinar dan mengubahnya menjadi besaran terukur

Contoh: menghitamkan pelat foto, arus listrik, termal, dll

Detektor:

harus menghasilkan sinyal yang mempunyai hubungan kuantitatif dengan intensitas sinar

Page 36: 1. Spektrometer UV Vis

Noise Detektor: isyarat latar belakang yang timbul dalam detektor bila tidak ada intensitas sinar dari sampel yang sampai pada detektor

Sumber Noise:

* Perubahan dalam detektor

* Isyarat listrik dari peralatan

Syarat detektor:

* dapat menangkap/merespon energi sinar

* peka dengan noise rendah

* waktu respon pendek

* stabil

* dapat memperkuat isyarat listrik dengan mudah

* Isyarat listrik yang dihasilkan berbanding lurus denganintensitas sinar

Page 37: 1. Spektrometer UV Vis

Jenis Detektor Untuk Spektr. UV/VIS:

1. Foto sel : Vis

2. VPT (Vacuum Photo Tube= tabung foton hampa)

3. PMT (Photo multiplier Tube= tabung penggandaan foton), dapat mengukur isyarat dengan intensitas <<

Syarat Pelarut dalam Spektrofotometri:

• Dapat melarutkan cuplikan

• Tidak menyerap sinar yang digunakan

Pelarut Cut off Pelarut Cut off

Aseton

Benzen

CCl4Cs2

CHCl3

C6H12

CH2Cl2

330 nm

285 nm

265 nm

375 nm

245 nm

215 nm

235 nm

Etanol

Etilester

Isooktan

Isopropanol

Metanol

Piridin

air

205 nm

205 nm

215 nm

215 nm

215 nm

305 nm

200 nm

Page 38: 1. Spektrometer UV Vis

Ax

A

Analisis kuantitatif

Dasar : Hk L-B A = B C

1). Cara perbandingan:

Membandingkan A sampel dengan A std

yang diketahui konsentrasinya

As = . b.Cs

Ax = .b. Cx

Cx= As.Cs/Ax

2). Cara kurva kalibrasi:

Membuat kurva kalibrasi (C vs A)

xx

xx

x

C

Cx

2). Cara adisi standar:

standar → ukur As

cuplikan + Standar -→ ukur : A = As + Ax

Perhatikan pengaruh pengenceran !!!!

Page 39: 1. Spektrometer UV Vis

4). Cara standar adisi:

Vs.Cs1 VsCs2 VsCs3 VsCs4 VsCs5

VxCx

A= b VxCx/Vt + b VsCs/Vt

Plot A vs Cs -----→ A = + Cs

= b VxCx/Vt = b VsCs/Vt

A

C

= kemiringan kurva/slop

Contoh Soal untuk Cara 3

Serapan10 mL larutan Co2+ 0,0005 M adalah 0,35. 10 mL larutan tersebut yg dicampur dengan 10 mL larutan cuplikan menghasilkan serapan 0,52. Hitung konsentrasi Co2+ dalam cuplikan

= Selisih dengan titik 0/ intersep

Page 40: 1. Spektrometer UV Vis

Analisis multi komponen

Syarat: komponen2 tidak saling berinteraksi

Prinsip: A total ( ttt)= Ac1 + Ac2 + Ac3 + … dst

Contoh : campuran Ni2+ dengan Co2+

A (Ni)= Ni( -Ni)b. CNi + Co(-Ni)b. CCo

A (C0)= Ni(-Co)b. Cni + Co(-Co)B. Cco

Harus dicari 4 dari 4 kurva kalibrasi:

Ni( -Ni) ; Ni(-Co) ; Co(-Ni) ; Co(-Co)

(persamaan dengan dua bilangan anu)

A

Ni

Co

Ni+Co

Ttk isosbestik

Page 41: 1. Spektrometer UV Vis

Langkah-langkah utama dalam Analisis kuantitatif dengan spektro. UV/VIS:

1. Pembentukan molekul yang dapat menyerap sinar tampak (VIS).

2. Pemilihan panjang gelombang (kurva serapan)

3. Pembuatan kurva kalibrasi

4. Pengukuran absorbans cuplikan/analit

5. Penentuan konsentrasi analit

Page 42: 1. Spektrometer UV Vis

Apakah kurva kalibrasi selalu linier menuju nol ?

Ya, selama mengikuti hukum Lambert-Beer.

Syarat berlakunya hukum L-B:

Syarat konsentrasi : rendah (ppm)

Syarat kimia: Zat pengabsorpsi

tidak terdisosiasi, tidak bereaksi

dengan pelarut, stabil

Syarat cahaya:

harus monokromatis

Page 43: 1. Spektrometer UV Vis

43

Materi tambahan

Page 44: 1. Spektrometer UV Vis

44UV Spectroscopy

I. PendahuluanA. UV radiation and Electronic Excitations

1. The difference in energy between molecular bonding, non-bonding and anti-bonding orbitals ranges from 125-650 kJ/mole

2. This energy corresponds to EM radiation in the ultraviolet (UV) region, 100-350 nm, and visible (VIS) regions 350-700 nm of the spectrum

3. For comparison, recall the EM spectrum:

4. Using IR we observed vibrational transitions with energies of 8-40 kJ/mol at wavelengths of 2500-15,000 nm

5. For purposes of our discussion, we will refer to UV and VIS spectroscopy as UV

UVX-rays IR-rays RadioMicrowave

Visible

Page 45: 1. Spektrometer UV Vis

45UV Spectroscopy

I. IntroductionB. The Spectroscopic Process

1. In UV spectroscopy, the sample is irradiated with the broad spectrum of the UV radiation

2. If a particular electronic transition matches the energy of a certain band of UV, it will be absorbed

3. The remaining UV light passes through the sample and is observed4. From this residual radiation a spectrum is obtained with “gaps” at these

discrete energies – this is called an absorption spectrum

p

p*

p

p*

Page 46: 1. Spektrometer UV Vis

46UV Spectroscopy

I. IntroductionC. Observed electronic transitions

1. The lowest energy transition (and most often obs. by UV) is typically that of an electron in the Highest Occupied Molecular Orbital (HOMO) to the Lowest Unoccupied Molecular Orbital (LUMO)

2. For any bond (pair of electrons) in a molecule, the molecular orbitals are a mixture of the two contributing atomic orbitals; for every bonding orbital “created” from this mixing (, p), there is a corresponding anti-bonding orbital of symmetrically higher energy (*, p*)

3. The lowest energy occupied orbitals are typically the ; likewise, the corresponding anti-bonding * orbital is of the highest energy

4. p-orbitals are of somewhat higher energy, and their complementary anti-bonding orbital somewhat lower in energy than *.

5. Unshared pairs lie at the energy of the original atomic orbital, most often this energy is higher than p or (since no bond is formed, there is no benefit in energy)

Page 47: 1. Spektrometer UV Vis

47UV Spectroscopy

I. IntroductionC. Observed electronic transitions

6. Here is a graphical representation

Energy

*

p

p*

nAtomic orbitalAtomic orbital

Molecular orbitals

Occupied levels

Unoccupied levels

Page 48: 1. Spektrometer UV Vis

48UV Spectroscopy

I. IntroductionC. Observed electronic transitions

7. From the molecular orbital diagram, there are several possible electronic transitions that can occur, each of a different relative energy:

Energy

*

p

p*

n

p

n

n

*

p*

p*

*

p*

alkanes

carbonyls

unsaturated cmpds.

O, N, S, halogens

carbonyls

Page 49: 1. Spektrometer UV Vis

49UV Spectroscopy

I. IntroductionC. Observed electronic transitions

7. Although the UV spectrum extends below 100 nm (high energy), oxygen in the atmosphere is not transparent below 200 nm

8. Special equipment to study vacuum or far UV is required

9. Routine organic UV spectra are typically collected from 200-700 nm

10. This limits the transitions that can be observed:

p

n

n

*

p*

p*

*

p*

alkanes

carbonyls

unsaturated cmpds.

O, N, S, halogens

carbonyls

150 nm

170 nm

180 nm √ - if conjugated!

190 nm

300 nm √

Page 50: 1. Spektrometer UV Vis

50UV Spectroscopy

I. IntroductionD. Selection Rules

1. Not all transitions that are possible are observed

2. For an electron to transition, certain quantum mechanical constraints apply – these are called “selection rules”

3. For example, an electron cannot change its spin quantum number during a transition – these are “forbidden”

Other examples include:• the number of electrons that can be excited at one time• symmetry properties of the molecule• symmetry of the electronic states

4. To further complicate matters, “forbidden” transitions are sometimes observed (albeit at low intensity) due to other factors

Page 51: 1. Spektrometer UV Vis

51UV Spectroscopy

I. IntroductionE. Band Structure

1. Unlike IR (or later NMR), where there may be upwards of 5 or more resolvable peaks from which to elucidate structural information, UV tends to give wide, overlapping bands

2. It would seem that since the electronic energy levels of a pure sample of molecules would be quantized, fine, discrete bands would be observed –for atomic spectra, this is the case

3. In molecules, when a bulk sample of molecules is observed, not all bonds (read – pairs of electrons) are in the same vibrational or rotational energy states

4. This effect will impact the wavelength at which a transition is observed –very similar to the effect of H-bonding on the O-H vibrational energy levels in neat samples

Page 52: 1. Spektrometer UV Vis

52UV Spectroscopy

I. IntroductionE. Band Structure

5. When these energy levels are superimposed, the effect can be readily explained – any transition has the possibility of being observed

Energy

Vo

V4

V3

V2

V1

Disassociation

R1 - Rn

R1 - Rn

R1 - Rn

R1 - Rn

R1 - RnE0

E1 Vo

V4

V3

V2

V1

Disassociation

R1 - Rn

R1 - Rn

R1 - Rn

R1 - Rn

R1 - Rn

Page 53: 1. Spektrometer UV Vis

53UV Spectroscopy

II. Instrumentation and SpectraA. Instrumentation

1. The construction of a traditional UV-VIS spectrometer is very similar to an IR, as similar functions – sample handling, irradiation, detection and output are required

2. Here is a simple schematic that covers most modern UV spectrometers:

sam

ple

refe

ren

ce

dete

cto

r

I0

I0 I0

I

log(I0/I) = A

200 700, nm

monochromator/

beam splitter optics

UV-VIS sources

Page 54: 1. Spektrometer UV Vis

54UV Spectroscopy

II. Instrumentation and SpectraA. Instrumentation

3. Two sources are required to scan the entire UV-VIS band:• Deuterium lamp – covers the UV – 200-330• Tungsten lamp – covers 330-700

4. As with the dispersive IR, the lamps illuminate the entire band of UV or visible light; the monochromator (grating or prism) gradually changes the small bands of radiation sent to the beam splitter

5. The beam splitter sends a separate band to a cell containing the sample solution and a reference solution

6. The detector measures the difference between the transmitted light through the sample (I) vs. the incident light (I0) and sends this information to the recorder

Page 55: 1. Spektrometer UV Vis

55UV Spectroscopy

II. Instrumentation and SpectraA. Instrumentation

7. As with dispersive IR, time is required to cover the entire UV-VIS band due to the mechanism of changing wavelengths

8. A recent improvement is the diode-array spectrophotometer - here a prism (dispersion device) breaks apart the full spectrum transmitted through the sample

9. Each individual band of UV is detected by a individual diodes on a silicon wafer simultaneously – the obvious limitation is the size of the diode, so some loss of resolution over traditional instruments is observed

sam

ple

Polychromator

– entrance slit and dispersion device

UV-VIS sources

Diode array

Page 56: 1. Spektrometer UV Vis

56UV Spectroscopy

II. Instrumentation and SpectraB. Instrumentation – Sample Handling

1. Virtually all UV spectra are recorded solution-phase

2. Cells can be made of plastic, glass or quartz

3. Only quartz is transparent in the full 200-700 nm range; plastic and glass are only suitable for visible spectra

4. Concentration (we will cover shortly) is empirically determined

A typical sample cell (commonly called a cuvet):

Page 57: 1. Spektrometer UV Vis

57UV Spectroscopy

II. Instrumentation and SpectraB. Instrumentation – Sample Handling

5. Solvents must be transparent in the region to be observed; the wavelength where a solvent is no longer transparent is referred to as the cutoff

6. Since spectra are only obtained up to 200 nm, solvents typically only need to lack conjugated p systems or carbonyls

Common solvents and cutoffs:acetonitrile 190chloroform 240cyclohexane 195 1,4-dioxane 21595% ethanol 205n-hexane 201methanol 205isooctane 195water 190

Page 58: 1. Spektrometer UV Vis

58UV Spectroscopy

II. Instrumentation and SpectraB. Instrumentation – Sample Handling

7. Additionally solvents must preserve the fine structure (where it is actually observed in UV!) where possible

8. H-bonding further complicates the effect of vibrational and rotational energy levels on electronic transitions, dipole-dipole interacts less so

9. The more non-polar the solvent, the better (this is not always possible)

Page 59: 1. Spektrometer UV Vis

59UV Spectroscopy

II. Instrumentation and SpectraC. The Spectrum

1. The x-axis of the spectrum is in wavelength; 200-350 nm for UV, 200-700 for UV-VIS determinations

2. Due to the lack of any fine structure, spectra are rarely shown in their raw form, rather, the peak maxima are simply reported as a numerical list of “lamba max” values or max

max = 206 nm

252

317

376

O

NH2

O

Page 60: 1. Spektrometer UV Vis

60UV Spectroscopy

II. Instrumentation and SpectraC. The Spectrum

1. The y-axis of the spectrum is in absorbance, A

2. From the spectrometers point of view, absorbance is the inverse of transmittance: A = log10 (I0/I)

3. From an experimental point of view, three other considerations must be made:

i. a longer path length, l through the sample will cause more UV light to be absorbed – linear effect

ii. the greater the concentration, c of the sample, the more UV light will be absorbed – linear effect

iii. some electronic transitions are more effective at the absorption of photon than others – molar absorptivity, this may vary by orders of magnitude…

Page 61: 1. Spektrometer UV Vis

61UV Spectroscopy

II. Instrumentation and SpectraC. The Spectrum

4. These effects are combined into the Beer-Lambert Law: A = c l

i. for most UV spectrometers, l would remain constant (standard cells are typically 1 cm in path length)

ii. concentration is typically varied depending on the strength of absorption observed or expected – typically dilute – sub .001 M

iii. molar absorptivities vary by orders of magnitude:• values of 104-106 are termed high intensity absorptions• values of 103-104 are termed low intensity absorptions• values of 0 to 103 are the absorptions of forbidden transitions

A is unitless, so the units for are cm-1 · M-1 and are rarely expressed

5. Since path length and concentration effects can be easily factored out, absorbance simply becomes proportional to , and the y-axis is expressed as directly or as the logarithm of

Page 62: 1. Spektrometer UV Vis

62UV Spectroscopy

II. Instrumentation and SpectraD. Practical application of UV spectroscopy

1. UV was the first organic spectral method, however, it is rarely used as a primary method for structure determination

2. It is most useful in combination with NMR and IR data to elucidate unique electronic features that may be ambiguous in those methods

3. It can be used to assay (via max and molar absorptivity) the proper irradiation wavelengths for photochemical experiments, or the design of UV resistant paints and coatings

4. The most ubiquitous use of UV is as a detection device for HPLC; since UV is utilized for solution phase samples vs. a reference solvent this is easily incorporated into LC design

UV is to HPLC what mass spectrometry (MS) will be to GC

Page 63: 1. Spektrometer UV Vis

63UV Spectroscopy

III. ChromophoresA. Definition

1. Remember the electrons present in organic molecules are involved in covalent bonds or lone pairs of electrons on atoms such as O or N

2. Since similar functional groups will have electrons capable of discrete classes of transitions, the characteristic energy of these energies is more representative of the functional group than the electrons themselves

3. A functional group capable of having characteristic electronic transitions is called a chromophore (color loving)

4. Structural or electronic changes in the chromophore can be quantified and used to predict shifts in the observed electronic transitions

Page 64: 1. Spektrometer UV Vis

64UV Spectroscopy

III. ChromophoresB. Organic Chromophores

1. Alkanes – only posses -bonds and no lone pairs of electrons, so only the high energy → * transition is observed in the far UV

This transition is destructive to the molecule, causing cleavage of the -bond

*

C C

C C

Page 65: 1. Spektrometer UV Vis

65UV Spectroscopy

III. ChromophoresB. Organic Chromophores

2. Alcohols, ethers, amines and sulfur compounds – in the cases of simple, aliphatic examples of these compounds the n → * is the most often observed transition; like the alkane → * it is most often at shorter

than 200 nm

Note how this transition occurs from the HOMO to the LUMO

*CN

CN

nN sp3C N

C N

C N

C N

anitbonding orbital

Page 66: 1. Spektrometer UV Vis

66UV Spectroscopy

III. ChromophoresB. Organic Chromophores

3. Alkenes and Alkynes – in the case of isolated examples of these compounds the p → p* is observed at 175 and 170 nm, respectively

Even though this transition is of lower energy than → *, it is still in

the far UV – however, the transition energy is sensitive to substitution

p*

p

Page 67: 1. Spektrometer UV Vis

67UV Spectroscopy

III. ChromophoresB. Organic Chromophores

4. Carbonyls – unsaturated systems incorporating N or O can undergo n → p* transitions (~285 nm) in addition to p → p*

Despite the fact this transition is forbidden by the selection rules ( = 15), it is the most often observed and studied transition for carbonyls

This transition is also sensitive to substituents on the carbonyl

Similar to alkenes and alkynes, non-substituted carbonyls undergo the p → p* transition in the vacuum UV (188 nm, = 900); sensitive to

substitution effects

Page 68: 1. Spektrometer UV Vis

68UV Spectroscopy

III. ChromophoresB. Organic Chromophores

4. Carbonyls – n → p* transitions (~285 nm); p → p* (188 nm)

p

p*

n

CO transitions omitted for clarity

O

O

C O

It has been determined from spectral studies, that carbonyl oxygen more approximates sprather than sp2 !

Page 69: 1. Spektrometer UV Vis

69UV Spectroscopy

III. ChromophoresC. Substituent Effects

General – from our brief study of these general chromophores, only the weak n → p* transition occurs in the routinely observed UV

The attachment of substituent groups (other than H) can shift the energy of the transition

Substituents that increase the intensity and often wavelength of an absorption are called auxochromes

Common auxochromes include alkyl, hydroxyl, alkoxy and amino groups and the halogens

Page 70: 1. Spektrometer UV Vis

70UV Spectroscopy

III. ChromophoresC. Substituent Effects

General – Substituents may have any of four effects on a chromophorei. Bathochromic shift (red shift) – a shift to longer ; lower energy

ii. Hypsochromic shift (blue shift) – shift to shorter ; higher energy

iii. Hyperchromic effect – an increase in intensity

iv. Hypochromic effect – a decrease in intensity

200 nm 700 nm

H

yp

och

rom

icHypsochromic

Hyp

erc

hro

mic

Bathochromic

Page 71: 1. Spektrometer UV Vis

71UV Spectroscopy

III. ChromophoresC. Substituent Effects

1. Conjugation – most efficient means of bringing about a bathochromic and hyperchromic shift of an unsaturated chromophore:

H2CCH2

-carotene

O

O

max nm

175 15,000

217 21,000

258 35,000

n → p* 280 27p → p* 213 7,100

465 125,000

n → p* 280 12p → p* 189 900

Page 72: 1. Spektrometer UV Vis

72UV Spectroscopy

III. ChromophoresC. Substituent Effects

1. Conjugation – AlkenesThe observed shifts from conjugation imply that an increase in conjugation decreases the energy required for electronic excitation

From molecular orbital (MO) theory two atomic p orbitals, f1 and f2 from two sp2 hybrid carbons combine to form two MOs Y1 and Y2* in ethylene

Y2*

pY1

f1 f2

Page 73: 1. Spektrometer UV Vis

73UV Spectroscopy

III. ChromophoresC. Substituent Effects

2. Conjugation – AlkenesWhen we consider butadiene, we are now mixing 4 p orbitals giving 4 MOs of an energetically symmetrical distribution compared to ethylene

Y2*

pY1Y1

Y2

Y3*

Y4*

DE for the HOMO → LUMO transition is reduced

Page 74: 1. Spektrometer UV Vis

74UV Spectroscopy

III. ChromophoresC. Substituent Effects

2. Conjugation – AlkenesExtending this effect out to longer conjugated systems the energy gap becomes progressively smaller:

Energy

ethylene

butadiene

hexatriene

octatetraene

Lower energy =Longer wavelenghts

Page 75: 1. Spektrometer UV Vis

75UV Spectroscopy

III. ChromophoresC. Substituent Effects

2. Conjugation – AlkenesSimilarly, the lone pairs of electrons on N, O, S, X can extend conjugated systems – auxochromesHere we create 3 MOs – this interaction is not as strong as that of a conjugated p-system

Y2

p

Y1

A

p*

nA

Y3*

Energy

Page 76: 1. Spektrometer UV Vis

76UV Spectroscopy

III. ChromophoresC. Substituent Effects

2. Conjugation – AlkenesMethyl groups also cause a bathochromic shift, even though they are devoid of p- or n-electronsThis effect is thought to be through what is termed “hyperconjugation”or sigma bond resonance

C C

C

H

H

H

Page 77: 1. Spektrometer UV Vis

77UV Spectroscopy

Next time – We will find that the effect of substituent groups can be reliably quantified

from empirical observation of known conjugated structures and applied to new

systems

This quantification is referred to as the Woodward-Fieser Rules which we will apply

to three specific chromophores:

1. Conjugated dienes

2. Conjugated dienones

3. Aromatic systems

max = 239 nm

Page 78: 1. Spektrometer UV Vis

78UV Spectroscopy

IV. Structure Determination A. Dienes

1. General FeaturesFor acyclic butadiene, two conformers are possible – s-cis and s-trans

The s-cis conformer is at an overall higher potential energy than the s-trans; therefore the HOMO electrons of the conjugated system have less of a jump to the LUMO – lower energy, longer wavelength

s-trans s-cis

Page 79: 1. Spektrometer UV Vis

79UV Spectroscopy

IV. Structure Determination A. Dienes

1. General FeaturesTwo possible p → p* transitions can occur for butadiene Y2 → Y3

* and Y2

→ Y4*

The Y2 → Y4* transition is not typically observed:

• The energy of this transition places it outside the region typically observed – 175 nm

• For the more favorable s-trans conformation, this transition is forbidden

The Y2 → Y3* transition is observed as an intense absorption

s-trans s-cis

175 nm –forb.

217 nm 253 nm

175 nm

Y4*

Y2

Y1

Y3*

Page 80: 1. Spektrometer UV Vis

80UV Spectroscopy

IV. Structure Determination A. Dienes

1. General FeaturesThe Y2 → Y3

* transition is observed as an intense absorption (e =

20,000+) based at 217 nm within the observed region of the UV

While this band is insensitive to solvent (as would be expected) it is subject to the bathochromic and hyperchromic effects of alkyl substituents as well as further conjugation

Consider:

max = 217 253 220 227 227 256 263 nm

Page 81: 1. Spektrometer UV Vis

81UV Spectroscopy

IV. Structure Determination A. Dienes

2. Woodward-Fieser RulesWoodward and the Fiesers performed extensive studies of terpene and steroidal alkenes and noted similar substituents and structural features would predictably lead to an empirical prediction of the wavelength for the lowest energy p → p* electronic transition

This work was distilled by Scott in 1964 into an extensive treatise on the Woodward-Fieser rules in combination with comprehensive tables and examples – (A.I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products, Pergamon, NY, 1964)

A more modern interpretation was compiled by Rao in 1975 – (C.N.R. Rao, Ultraviolet and Visible Spectroscopy, 3rd Ed., Butterworths, London, 1975)

Page 82: 1. Spektrometer UV Vis

82UV Spectroscopy

IV. Structure Determination A. Dienes

2. Woodward-Fieser Rules - DienesThe rules begin with a base value for max of the chromophore being observed:

acyclic butadiene = 217 nm

The incremental contribution of substituents is added to this base value from the group tables:

Group Increment

Extended conjugation +30

Each exo-cyclic C=C +5

Alkyl +5

-OCOCH3 +0

-OR +6

-SR +30

-Cl, -Br +5

-NR2 +60

Page 83: 1. Spektrometer UV Vis

83UV Spectroscopy

IV. Structure Determination A. Dienes

2. Woodward-Fieser Rules - DienesFor example:

Isoprene - acyclic butadiene = 217 nmone alkyl subs. + 5 nm

222 nmExperimental value 220 nm

Allylidenecyclohexane- acyclic butadiene = 217 nmone exocyclic C=C + 5 nm2 alkyl subs. +10 nm

232 nmExperimental value 237 nm

Page 84: 1. Spektrometer UV Vis

84UV Spectroscopy

IV. Structure Determination A. Dienes

3. Woodward-Fieser Rules – Cyclic DienesThere are two major types of cyclic dienes, with two different base values

Heteroannular (transoid): Homoannular (cisoid):

= 5,000 – 15,000 = 12,000-28,000base max = 214 base max = 253

The increment table is the same as for acyclic butadienes with a couple additions:

Group Increment

Additional homoannular +39

Where both types of diene are present, the one with the longer becomes the base

Page 85: 1. Spektrometer UV Vis

85UV Spectroscopy

IV. Structure Determination A. Dienes

3. Woodward-Fieser Rules – Cyclic DienesIn the pre-NMR era of organic spectral determination, the power of the method for discerning isomers is readily apparent

Consider abietic vs. levopimaric acid:

C

O

OHC

O

OH

levopimaric acidabietic acid

Page 86: 1. Spektrometer UV Vis

86UV Spectroscopy

IV. Structure Determination A. Dienes

3. Woodward-Fieser Rules – Cyclic DienesFor example:

1,2,3,7,8,8a-hexahydro-8a-methylnaphthalene heteroannular diene = 214 nm

3 alkyl subs. (3 x 5) +15 nm

1 exo C=C + 5 nm234 nm

Experimental value 235 nm

Page 87: 1. Spektrometer UV Vis

87UV Spectroscopy

IV. Structure Determination A. Dienes

3. Woodward-Fieser Rules – Cyclic Dienes

C

O

OH

heteroannular diene = 214 nm

4 alkyl subs. (4 x 5) +20 nm

1 exo C=C + 5 nm

239 nm

homoannular diene = 253 nm

4 alkyl subs. (4 x 5) +20 nm

1 exo C=C + 5 nm

278 nm

C

O

OH

Page 88: 1. Spektrometer UV Vis

88UV Spectroscopy

IV. Structure Determination A. Dienes

3. Woodward-Fieser Rules – Cyclic DienesBe careful with your assignments – three common errors:

R

This compound has three exocyclic double bonds; the indicated bond is exocyclic to two rings

This is not a heteroannular diene; you would use the base value for an acyclic diene

Likewise, this is not a homooannular diene; you would use the base value for an acyclic diene

Page 89: 1. Spektrometer UV Vis

89UV Spectroscopy

IV. Structure Determination B. Enones

1. General FeaturesCarbonyls, as we have discussed have two primary electronic transitions:

p

p*

n

Remember, the p → p* transition is

allowed and gives a high e, but lies outside the routine range of UV observation

The n → p* transition is forbidden and

gives a very low e, but can routinely be observed

Page 90: 1. Spektrometer UV Vis

90UV Spectroscopy

IV. Structure Determination B. Enones

1. General FeaturesFor auxochromic substitution on the carbonyl, pronounced hypsochromic shifts are observed for the n → p* transition (max):

This is explained by the inductive withdrawal of electrons by O, N or halogen from the carbonyl carbon – this causes the n-electrons on the carbonyl oxygen to be held more firmly

It is important to note this is different from the auxochromic effect on p → p* which

extends conjugation and causes a bathochromic shift

In most cases, this bathochromic shift is not enough to bring the p → p* transition into

the observed range

H

O

CH3

O

Cl

O

NH2

O

O

O

OH

O

293 nm

279

235

214

204

204

Page 91: 1. Spektrometer UV Vis

91UV Spectroscopy

IV. Structure Determination B. Enones

1. General FeaturesConversely, if the C=O system is conjugated both the n → p* and p → p*

bands are bathochromically shifted

Here, several effects must be noted:i. the effect is more pronounced for p → p*

ii. if the conjugated chain is long enough, the much higher intensity p → p* band will overlap and drown out the n → p*

band

iii. the shift of the n → p* transition is not as predictable

For these reasons, empirical Woodward-Fieser rules for conjugated enones are for the higher intensity, allowed p → p* transition

Page 92: 1. Spektrometer UV Vis

92UV Spectroscopy

IV. Structure Determination B. Enones

1. General FeaturesThese effects are apparent from the MO diagram for a conjugated enone:

pY1

Y2

Y3*

Y4*

p*

n

p

p*

n

OO

Page 93: 1. Spektrometer UV Vis

93UV Spectroscopy

IV. Structure Determination B. Enones

2. Woodward-Fieser Rules - Enones

Group Increment

6-membered ring or acyclic enone Base 215 nm

5-membered ring parent enone Base 202 nm

Acyclic dienone Base 245 nm

Double bond extending conjugation 30

Alkyl group or ring residue , , and higher 10, 12, 18

-OH , , and higher 35, 30, 18

-OR , , , 35, 30, 17, 31

-O(C=O)R , , 6

-Cl , 15, 12

-Br , 25, 30

-NR2 95

Exocyclic double bond 5

Homocyclic diene component 39

C C C

C C CC

C

O O

Page 94: 1. Spektrometer UV Vis

94UV Spectroscopy

IV. Structure Determination B. Enones

2. Woodward-Fieser Rules - EnonesAldehydes, esters and carboxylic acids have different base values than ketones

Unsaturated system Base Value

Aldehyde 208

With or alkyl groups 220

With , or , alkyl groups 230

With ,, alkyl groups 242

Acid or ester

With or alkyl groups 208

With , or , alkyl groups 217

Group value – exocyclic , double bond +5

Group value – endocyclic , bond in 5 or 7 membered ring

+5

Page 95: 1. Spektrometer UV Vis

95UV Spectroscopy

IV. Structure Determination B. Enones

2. Woodward-Fieser Rules - EnonesUnlike conjugated alkenes, solvent does have an effect on max

These effects are also described by the Woodward-Fieser rules

Solvent correction Increment

Water +8

Ethanol, methanol 0

Chloroform -1

Dioxane -5

Ether -7

Hydrocarbon -11

Page 96: 1. Spektrometer UV Vis

96UV Spectroscopy

IV. Structure Determination B. Enones

2. Woodward-Fieser Rules - EnonesSome examples – keep in mind these are more complex than dienes

cyclic enone = 215 nm

2 x - alkyl subs. (2 x 12) +24 nm

239 nm

Experimental value 238 nm

cyclic enone = 215 nm

extended conj. +30 nm

b-ring residue +12 nm

d-ring residue +18 nm

exocyclic double bond + 5 nm

280 nm

Experimental 280 nm

O

R

O

Page 97: 1. Spektrometer UV Vis

97UV Spectroscopy

IV. Structure Determination B. Enones

2. Woodward-Fieser Rules - EnonesTake home problem – can these two isomers be discerned by UV-spec

O

O

Eremophilone allo-Eremophilone

Problem Set 1: (text) – 1,2,3a,b,c,d,e,f,j, 4, 5, 6 (1st, 2nd and 5th pairs), 8a, b, c

Problem Set 2: outside problems/key -Tuesday

Page 98: 1. Spektrometer UV Vis

98UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

1. General FeaturesAlthough aromatic rings are among the most widely studied and observed chromophores, the absorptions that arise from the various electronic transitions are complex

On first inspection, benzene has six p-MOs, 3 filled p, 3 unfilled p*

p4* p5*

p6*

p2

p1

p3

Page 99: 1. Spektrometer UV Vis

99UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

1. General FeaturesOne would expect there to be four possible HOMO-LUMO p → p*

transitions at observable wavelengths (conjugation)

Due to symmetry concerns and selection rules, the actual transition energy states of benzene are illustrated at the right:

p4* p5*

p6*

p2

p1

p3

A1g

B2u

B1u

E1u

260 nm(forbidden)

200 nm(forbidden)

180 nm(allowed)

Page 100: 1. Spektrometer UV Vis

100UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

1. General FeaturesThe allowed transition ( = 47,000) is not in the routine range of UV obs. at 180 nm, and is referred to as the primary band

The forbidden transition ( = 7400) is observed if substituent effects shift it into the obs. region; this is referred to as the second primary band

At 260 nm is another forbiddentransition ( = 230), referred to as the secondary band.

This transition is fleetingly alloweddue to the disruption of symmetryby the vibrational energy states,the overlap of which is observedin what is called fine structure

Page 101: 1. Spektrometer UV Vis

101UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

1. General FeaturesSubstitution, auxochromic, conjugation and solvent effects can cause shifts in wavelength and intensity of aromatic systems similar to dienes and enones

However, these shifts are difficult to predict – the formulation of empirical rules is for the most part is not efficient (there are more exceptions than rules)

There are some general qualitative observations that can be made by classifying substituent groups --

Page 102: 1. Spektrometer UV Vis

102UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsa. Substituents with Unshared Electrons

• If the group attached to the ring bears n electrons, they can induce a shift in the primary and secondary absorption bands

• Non-bonding electrons extend the p-system through resonance – lowering the energy of transition p → p*

• More available n-pairs of electrons give greater shifts

GG G G

Page 103: 1. Spektrometer UV Vis

103UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsa. Substituents with Unshared Electrons

• The presence of n-electrons gives the possibility of n → p*

transitions

• If this occurs, the electron now removed from G, becomes an extra electron in the anti-bonding p* orbital of the ring

• This state is referred to as a charge-transfer excited state

GG G G

*-

*

*

*

Page 104: 1. Spektrometer UV Vis

104UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsa. Substituents with Unshared Electrons

• pH can change the nature of the substituent group• deprotonation of oxygen gives more available n-pairs,

lowering transition energy• protonation of nitrogen eliminates the n-pair,

raising transition energy

Primary Secondary

Substituent max max

-H 203.5 7,400 254 204

-OH 211 6,200 270 1,450

-O- 235 9,400 287 2,600

-NH2 230 8,600 280 1,430

-NH3+ 203 7,500 254 169

-C(O)OH 230 11,600 273 970

-C(O)O- 224 8,700 268 560

Page 105: 1. Spektrometer UV Vis

105UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsb. Substituents Capable of p-conjugation

• When the substituent is a p-chromophore, it can interact with the benzene p-system

• With benzoic acids, this causes an appreciable shift in the primary and secondary bands

• For the benzoate ion, the effect of extra n-electrons from the anion reduces the effect slightly

Primary Secondary

Substituent max max

-C(O)OH 230 11,600 273 970

-C(O)O- 224 8,700 268 560

Page 106: 1. Spektrometer UV Vis

106UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsc. Electron-donating and electron-withdrawing effects

• No matter what electronic influence a group exerts, the presence shifts the primary absorption band to longer

• Electron-withdrawing groups exert no influence on the position of the secondary absorption band

• Electron-donating groups increase the and of the secondary absorption band

Page 107: 1. Spektrometer UV Vis

107UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsc. Electron-donating and electron-withdrawing effects

Primary Secondary

Substituent max max

-H 203.5 7,400 254 204

-CH3 207 7,000 261 225

-Cl 210 7,400 264 190

-Br 210 7,900 261 192

-OH 211 6,200 270 1,450

-OCH3 217 6,400 269 1,480

-NH2 230 8,600 280 1,430

-CN 224 13,000 271 1,000

C(O)OH 230 11,600 273 970

-C(O)H 250 11,400

-C(O)CH3 224 9,800

-NO2 269 7,800

Ele

ctro

n d

onating

Ele

ctro

n w

ithdra

win

g

Page 108: 1. Spektrometer UV Vis

108UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsd. Di-substituted and multiple group effects

• With di-substituted aromatics, it is necessary to consider both groups

• If both groups are electron donating or withdrawing, the effect is similar to the effect of the stronger of the two groups as if it were a mono-substituted ring

• If one group is electron withdrawing and one group electron donating and they are para- to one another, the magnitude of the shift is greater than the sum of both the group effects

• Consider p-nitroaniline:

H2N N

O

O

H2N N

O

O

Page 109: 1. Spektrometer UV Vis

109UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsd. Di-substituted and multiple group effects

• If the two electonically dissimilar groups are ortho- or meta-to one another, the effect is usually the sum of the two individual effects (meta- no resonance; ortho-steric hind.)

• For the case of substituted benzoyl derivatives, an empirical correlation of structure with observed max has been developed

• This is slightly less accurate than the Woodward-Fieser rules, but can usually predict within an error of 5 nm

RO

G

Page 110: 1. Spektrometer UV Vis

110UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsd. Di-substituted and multiple group effects

RO

G

Substituent increment

G o m p

Alkyl or ring residue 3 3 10

-O-Alkyl, -OH, -O-Ring 7 7 25

-O- 11 20 78

-Cl 0 0 10

-Br 2 2 15

-NH2 13 13 58

-NHC(O)CH3 20 20 45

-NHCH3 73

-N(CH3)2 20 20 85

Parent Chromophore max

R = alkyl or ring residue 246

R = H 250

R = OH or O-Alkyl 230

Page 111: 1. Spektrometer UV Vis

111UV Spectroscopy

IV. Structure Determination C. Aromatic Compounds

2. Substituent Effectsd. Polynuclear aromatics

• When the number of fused aromatic rings increases, the for the primary and secondary bands also increase

• For heteroaromatic systems spectra become complex with the addition of the n → p* transition and ring size effects and are

unique to each case

Page 112: 1. Spektrometer UV Vis

112UV Spectroscopy

V. Visible SpectroscopyA. Color

1. General • The portion of the EM spectrum from 400-800 is observable to

humans- we (and some other mammals) have the adaptation of seeing color at the expense of greater detail

400 500 600 800700

, nm

Violet 400-420

Indigo 420-440

Blue 440-490

Green 490-570

Yellow 570-585

Orange 585-620

Red 620-780

Page 113: 1. Spektrometer UV Vis

113UV Spectroscopy

V. Visible SpectroscopyA. Color

1. General • When white (continuum of ) light passes through, or is reflected

by a surface, those ls that are absorbed are removed from the transmitted or reflected light respectively

• What is “seen” is the complimentary colors (those that are not absorbed)

• This is the origin of the “color wheel”

Page 114: 1. Spektrometer UV Vis

114UV Spectroscopy

V. Visible SpectroscopyA. Color

1. General • Organic compounds that are “colored” are typically those with

extensively conjugated systems (typically more than five)

• Consider -carotene

-carotene, max = 455 nm

max is at 455 – in the far blue region of the spectrum – this is absorbed

The remaining light has the complementary color of orange

Page 115: 1. Spektrometer UV Vis

115UV Spectroscopy

V. Visible SpectroscopyA. Color

1. General • Likewise:

max for lycopene is at 474 – in the near blue region of the spectrum – this is absorbed, the compliment is now red

max for indigo is at 602 – in the orange region of the spectrum – this is absorbed, the compliment is now indigo!

lycopene, max = 474 nm

NH

HN

O

O

indigo

Page 116: 1. Spektrometer UV Vis

116UV Spectroscopy

V. Visible SpectroscopyA. Color

1. General • One of the most common class of colored organic molecules are

the azo dyes:

From our discussion of di-subsituted aromatic chromophores, the effect of opposite groups is greater than the sum of the individual effects – more so on this heavily conjugated system

Coincidentally, it is necessary for these to be opposite for the original synthetic preparation!

N N

EDGsEWGs

Page 117: 1. Spektrometer UV Vis

117

OH

N

N

NO2

Para Red

NN

NH2

H2N

Fast Brown

NNO3S

HO

SO3

Sunset Yellow (Food Yellow 3)

UV Spectroscopy

V. Visible SpectroscopyA. Color

1. General • These materials are some of the more familiar colors of our

“environment”

Page 118: 1. Spektrometer UV Vis

118

The colors of M&M’sBright Blue

Common Food Uses

Beverages, dairy products, powders, jellies, confections, condiments, icing.

Royal Blue

Common Food Uses

Baked goods, cereals, snack foods, ice-cream, confections, cherries.

Orange-red

Common Food Uses

Gelatins, puddings, dairy products, confections, beverages, condiments.

Lemon-yellow

Common Food Uses

Custards, beverages, ice-cream, confections, preserves, cereals.

Orange

Common Food Uses

Cereals, baked goods, snack foods, ice-cream, beverages, dessert powders, confections

Page 119: 1. Spektrometer UV Vis

119

NNO3S

SO3

N N

HO

UV Spectroscopy

V. Visible SpectroscopyA. Color

1. General • In the biological sciences these compounds are used as dyes to

selectively stain different tissues or cell structures

• Biebrich Scarlet - Used with picric acid/aniline blue for staining collagen, recticulum, muscle, and plasma. Luna's method for erythrocytes & eosinophil granules. Guard's method for sex chromatin and nuclear chromatin.

Page 120: 1. Spektrometer UV Vis

120

NNO3S N

CH3

CH3

NHNO3S N

CH3

CH3

Yellow, pH > 4.4 Red, pH < 3.2

Methyl Orange

UV Spectroscopy

V. Visible SpectroscopyA. Color

1. General • In the chemical sciences these are the acid-base indicators used for

the various pH ranges:

• Remember the effects of pH on aromatic substituents