Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur...

32
1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile agar tetap pada posisinya, menyokong deck dan melindungi conductor serta menyokong sub-struktur lainnya Di dalam perhitungannya, gaya gempa merupakan salah satu aspek penting yang harus diperhatikan didalam merencanakan stuktur jacket. Tugas akhir ini bertujuan melakukan analisa pushover pada struktur jacket dengan meninjau kondisi gempa 800 tahun pada struktur jacket terpancang. Analisa dilakukan pada salah satu jacket platform di perairan Indonesia yang memiliki sensitifitas gempa cukup tinggi. Analisa dilakukan dengan menggunakan software SACS milik untuk mendapatkan Reserve Strength Ratio (RSR). Metode pushover digunakan untuk melakukan analisa kekuatan ultimate struktur. Pada struktur jacket terpancang akan diberikan beban gempa dalam kondisi 800 tahun, dimana gempa tersebut dapat digolongkan kondisi gempa yang cukup besar dan berdampak pada kegagalan struktur yang berdampak runtuhnya struktur jacket terpancang. Setelah memberikan beban gempa lalu akan diberikan beban kerja pada lantai platform secara linier sehingga struktur benar-benar mengalami keruntuhan. Dari analisa yang dilakukan akan didapat berapa besarnya beban yang mampu ditopang oleh suatu struktur jacket terpancang akibat beban gempa dan beban kerja. BAB I PENDAHULUAN I.1 LATAR BELAKANG Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Di dalam perhitungannya, analisa pushover merupakan salah satu aspek penting yang harus diperhatikan didalam merencanakan stuktur jacket. Jacket berfungsi untuk melindungi pile agar tetap pada posisinya, menyokong deck dan melindungi konduktor serta menyokong sub-struktur lainnya seperti boat landing, barge bumper dan lain-lain. Elemen utama struktur jacket adalah sebagai berikut: Kaki jacket Braces (penguat) vertikal, horisontal dan diagonal Joint pertemuan antara kaki jacket dan braces Skirt pile, dll. Jacket dikembangkan untuk operasi di laut dangkal dan laut sedang yang dasarnya tebal, lunak dan berlumpur. Setelah jacket ditempatkan di posisi yang diinginkan, pile dimasukkan melalui kaki bangunan dan dipancang dengan hammer sampai menembus lapisan tanah keras kemudian dek dipasang dan dilas. Bahan baku atau material utama struktur jacket yang digunakan adalah baja. Baja memiliki sifat-sifat yang menguntungkan untuk dipakai sebagai bahan struktur yang mampu memikul beban statik maupun beban dinamik. Penilaian jacket dilakukan untuk mengetahui kelayakan maupun keamanan suatu anjungan selama waktu operasi. Menurut Murdjito (1996), Salah satu diantara hal yang sangat penting dalam analisa suatu struktur bangunan lepas pantai adalah analisa atas kemampuan suatu struktur untuk memenuhi target desain yang telah ditetapkan, termasuk disini adalah bahwa struktur tidak akan mengalami kegagalan dalam berbagai kondisi kerja. Analisa tersebut dapat dilakukan dengan berbagai cara untuk mendapatkan kapasitas maksimal struktur untuk menerima beban. Analisa pushover dapat di definisikan suatu metode yang dipakai dalam menganalisa keruntuhan struktur dan merupakan analisa nonlinear dengan pembebanan inkremental untuk menentukan pembebanan yang menyebabkan struktur runtuh dan juga merupkan salah satu cara untuk mengetahui besarnya kapasitas struktur untuk menerima beban maksimal. Metode yang dilakukan adalah dengan melakukan simulasi penambahan beban secara bertahap sampai struktur tersebut runtuh. Dari hasil tersebut akan diketahui Reserve Strength Ratio (RSR) atau rasio kekuatan cadangan struktur untuk mengetahui apakah jacket platform memiliki cukup kekuatan dan stabilitas untuk tetap menahan beban akibat overstress lokal yang melebihi tegangan ijin, namun tanpa keruntuhan Untuk memenuhi persyaratan kekuatan, struktur jacket harus didesain atas gempa periodik dengan interval kejadian 200 tahun (SL/strength level) dan gempa jarang dengan interval 800 s/d 1000 tahun (DL/ductility level). Dalam tugas akhir yang akan saya kerjakan membahas tentang analisa pushover dengan kondisi gempa yang cukup tinggi yaitu gempa dengan interval 800 tahun pada salah satu struktur jacket terpancang Bekapai-BL milik perusahaan minyak TOTAL

Transcript of Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur...

Page 1: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

1

Abstrak

Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile agar tetap pada posisinya, menyokong deck dan melindungi conductor serta menyokong sub-struktur lainnya Di dalam perhitungannya, gaya gempa merupakan salah satu aspek penting yang harus diperhatikan didalam merencanakan stuktur jacket. Tugas akhir ini bertujuan melakukan analisa pushover pada struktur jacket dengan meninjau kondisi gempa 800 tahun pada struktur jacket terpancang. Analisa dilakukan pada salah satu jacket platform di perairan Indonesia yang memiliki sensitifitas gempa cukup tinggi. Analisa dilakukan dengan menggunakan software SACS milik untuk mendapatkan Reserve Strength Ratio (RSR). Metode pushover digunakan untuk melakukan analisa kekuatan ultimate struktur. Pada struktur jacket terpancang akan diberikan beban gempa dalam kondisi 800 tahun, dimana gempa tersebut dapat digolongkan kondisi gempa yang cukup besar dan berdampak pada kegagalan struktur yang berdampak runtuhnya struktur jacket terpancang. Setelah memberikan beban gempa lalu akan diberikan beban kerja pada lantai platform secara linier sehingga struktur benar-benar mengalami keruntuhan. Dari analisa yang dilakukan akan didapat berapa besarnya beban yang mampu ditopang oleh suatu struktur jacket terpancang akibat beban gempa dan beban kerja.

BAB I

PENDAHULUAN

I.1 LATAR BELAKANG

Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Di dalam perhitungannya, analisa pushover merupakan salah satu aspek penting yang harus diperhatikan didalam merencanakan stuktur jacket. Jacket berfungsi untuk melindungi pile agar tetap pada posisinya, menyokong deck dan melindungi konduktor serta menyokong sub-struktur lainnya seperti boat landing, barge bumper dan lain-lain. Elemen utama struktur jacket adalah sebagai berikut:

Kaki jacket Braces (penguat) vertikal, horisontal

dan diagonal Joint pertemuan antara kaki jacket dan

braces Skirt pile, dll.

Jacket dikembangkan untuk operasi di laut dangkal dan laut sedang yang dasarnya tebal, lunak dan berlumpur. Setelah jacket ditempatkan di posisi yang diinginkan, pile dimasukkan melalui kaki bangunan dan dipancang dengan hammer sampai menembus lapisan tanah keras kemudian dek dipasang dan dilas. Bahan baku atau material utama struktur jacket yang digunakan adalah baja. Baja memiliki sifat-sifat yang menguntungkan untuk dipakai sebagai bahan struktur yang mampu memikul beban statik maupun beban dinamik.

Penilaian jacket dilakukan untuk mengetahui kelayakan maupun keamanan suatu anjungan selama waktu operasi. Menurut Murdjito (1996),

Salah satu diantara hal yang sangat penting dalam analisa suatu struktur bangunan lepas pantai adalah analisa atas kemampuan suatu struktur untuk memenuhi target desain yang telah ditetapkan, termasuk disini adalah bahwa struktur tidak akan mengalami kegagalan dalam berbagai kondisi kerja. Analisa tersebut dapat dilakukan dengan berbagai cara untuk mendapatkan kapasitas maksimal struktur untuk menerima beban.

Analisa pushover dapat di definisikan suatu metode yang dipakai dalam menganalisa keruntuhan struktur dan merupakan analisa nonlinear dengan pembebanan inkremental untuk menentukan pembebanan yang menyebabkan struktur runtuh dan juga merupkan salah satu cara untuk mengetahui besarnya kapasitas struktur untuk menerima beban maksimal. Metode yang dilakukan adalah dengan melakukan simulasi penambahan beban secara bertahap sampai struktur tersebut runtuh. Dari hasil tersebut akan diketahui Reserve Strength Ratio (RSR) atau rasio kekuatan cadangan struktur untuk mengetahui apakah jacket platform memiliki cukup kekuatan dan stabilitas untuk tetap menahan beban akibat overstress lokal yang melebihi tegangan ijin, namun tanpa keruntuhan

Untuk memenuhi persyaratan kekuatan, struktur jacket harus didesain atas gempa periodik dengan interval kejadian 200 tahun (SL/strength level) dan gempa jarang dengan interval 800 s/d 1000 tahun (DL/ductility level). Dalam tugas akhir yang akan saya kerjakan membahas tentang analisa pushover dengan kondisi gempa yang cukup tinggi yaitu gempa dengan interval 800 tahun pada salah satu struktur jacket terpancang Bekapai-BL milik perusahaan minyak TOTAL

Page 2: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

E

pIyMu

ak

I

P

E&P INDONselat makasar

Hal tersebplatform lepaIndonesia khyang kebanyaMaka dari ituntuk mengestruktur terseapabila strukonsekuensi y

Gamb(sumber : M

I.2 RUMUS

Permasalahansebagai berik

NESIA yangr. but di atas tidas pantai yanhususnya jeniakan telah metu, perlu dilaetahui bagaimebut menginguktur tersebuyang terjadi.

bar 1.1 StrukturMurdjito. 1996. D

Lepas P

SAN MASAL

n dalam Tugakut:

g berlokasi

dak lepas denng beroperasi is fixed jackelebihi umur akukan analismana kriteria gat resiko yanut gagal sa

r Bangunan OffsDiktat Pengantar

antai.)

LAH

as Akhir ini

di perairan

ngan kondisi di perairan

ket platform operasinya.

sa pushover resiko dari

ng diterima angat besar

shore r Bangunan

dirumuskan

Berapdari sgempa

Berapstatis

Bagairangkdianal

Bagaijacketmeng

I.3 TUJU

Dengan aTugas Ak Dapat

denganon-limeng

Mengbeban

Melakpipa yprogra

Mengjacket

I.4 BATA

PemoSoftwdan an

Modamacamoleh pusho

Struktstrukt

Unity Softw

UC (memb

Tidakterpan

I.5 MAN

Penyumemberikketekniksiwawasan Output yadiharapkamahasiswmerancan

pa besar RSRstruktur jackea ?

pa UC (Unity?

imana melakka baja piplisis dengan pimana mengt pada angunakan prog

UAN

adanya perumkhir ini bertujut melakukanan memenuhiinier pushgunakan prog

getahui UC (n statis. kukan pemodyang dimodeam SACS.

getahui titik kt dengan men

ASAN MASA

delan Struktuware yang dinalisa struktu

a kegagalan m moda ke

beban koover . tur yang dititur pada bagiaCheck.

ware yang dig(Unity Checkber menggunak meninjau bncang.

NFAAT TUG

usunan Tugaskan manipilan, terutentang ilm

ang dihasilkaan dapat mem

wa Teknik ng jacket stuc

R (Reserve Set Bekapai-BL

y Check) berd

kukan pemoa yang dim

program SACgetahui perfnalisa pushgram SACS ?

musan masalahuan untuk: n design si kriteria RSRhover analgram SACS . (Unity Check

delan struktuelkan dan dia

kritis akibat pnggunakan pro

ALAH

ur jacket. gunakan dala

ur adalah SACdalam analigagalan, yaimbinasi ul

injau untuk an jacket.

gunakan dalak) Peluang akan SACS. biaya pada

GAS AKHIR

s Akhir ini dihfaat dala

utama dalammu bangunanan dalam Tu

mberi kemudaSipil ITS

cture pada b

Strength RasiL akibat beba

dasarkan beba

delan struktmodelkan da

CS ? forma strukthover denga?

h di atas, mak

truktur jackR dengan calisis denga k) berdasarka

ur rangka baanalisis denga

pushover padogram SACS

am pemodelaCS. sa hanya saitu disebabkatimate akib

analisa adala

am menghitun kegagala

struktur jack

harapkan dapam bidanm menamban lepas pantaugas Akhir iahan bagi pa

yang ingbangunan lep

io) an

an

tur an

tur an

ka

ket ara an

an

aja an

da .

an

atu an

bat

ah

ng an

ket

pat ng ah ai. ini ara gin pas

Page 3: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

3

pantai dengan memperhitungkan gaya gempa (seismic analysis) dari suatu struktur dengan menggunakan program bantu SACS. Diharapkan juga dapat menjadi referensi untuk mengembangkan wawasan keilmuan tentang bangunan lepas pantai yang lebih kompleks di Jurusan Teknik Sipil ITS di masa yang akan datang, sehingga dapat menambah wacana baru dalam bidang structural engineering. Dapat membedakan pengaruh beban genpa terhadap bangunan lepas pantai dengan pengaruh beban gempa terhadap bangunan onshore (gedung,dam,jembatan,dermaga) yang telah dipelajari di Jurusan Teknik Sipil ITS selama ini.

BAB II TINJAUAN PUSTAKA

II.1 UMUM

Indonesia termasuk wilayah sering mengalami gempa bumi baik di daratan maupun perairan lepas. Untuk mengatasi dan mengurangi resiko yang terjadi akibat gempa maka diperlukan bangunan yang tahan gempa baik di darat maupun di laut, sehingga dalam beberapa dekade terakhir telah banyak dilakukan penelitian untuk mendapatkan sistem struktur yang mempunyai respon paling baik terhadap gempa (Hamzah, 2010).

Menurut ISSC (2006), kekuatan ultimate dari member dan sistem struktur adalah ukuran sebenarnya dalam penilaian kekuatan yang berarti, bahwa kekuatan ultimate adalah kapasitas maksimal yang dapat dimiliki struktur. Tidak ada penambahan beban yang dapat dibawa melebihi kekuatan ultimate. Dibawah kombinasi beban umum, buckling dan yielding mendominasi kekuatan ultimate pada saat tegangan tekan dominan, di mana hanya yielding yang mendominasi kekuatan ultimate ketika tegangan tarik dominan. Keandalan sebuah struktur adalah kemampuan struktur untuk memenuhi tujuan desain untuk dispesifikasikan waktu yang ditentukan. Kebanyakan struktur mempunyai jumlah moda kemungkinan kegagalan. Maka, dalam penentuan keandalan struktur harus dilakukan perhitungan, dimana dalam perhitungannya ada beberapa tahap (Murotsu, 1986).

Untuk memenuhi persyaratan kekuatan, struktur jacket harus didesain atas gempa periodik dengan interval kejadian 200 tahun (SL/strength

level) dan gempa jarang dengan interval 800 s/d 1000 tahun (DL/ductility level). Untuk daerah gempa dengan aktifitas rendah (percepatan gempa < 0.05 gravitasi), maka tidak perlu dilakukan analisa gempa (seismic analysis). Untuk daerah dengan percepatan gempa antara 0.05g s/d 0.1g, analisa gempa menggunakan periode 800 s/d 1000 tahun dg tanpa mem-perhitungkan deck apurtenance dan memenuhi syarat kekuatan, maka desain dapat diterima. Untuk kondisi ini deck apurtenance harus didesain berdasarkan gempa SL tanpa gempa DL.

Gambar 2.1 Peta Zona Gempa Indonesia

(sumber : Kementerian Pekerjaan Umum; 2010)

II.2 DASAR TEORI II.2.1 Gambaran Singkat SACS 5.2

SACS adalah program yang dikembangkan untuk analisa struktur dan desain struktur lepas pantai dan aplikasi rekayasa sipil pada umumnya. SACS dikembangkan menggunakan program bahasa Visual C++ dan Microsoft Foundation Classes (MFC). Dibawah ini merupakan fitur utama yang dimiliki oleh SACS.

• Modeling Fitur ini berisi pemodelan struktur, geometri dan material properties, peralatan dan appurtenance, dan pemodelan beban. • Analysis & Design Fitur ini dapat melakukan analisa dan desain struktur. Seperti Linear Static Analysis, Static condensation (Super Elements), analisa interaksi struktur Soil-Pile, cek API RP 2A tubular member dan joint , AISC Check of Steel Shapes, cek API Bulletin 2V, DNV 30.1 dan DNV RP C201 Stiffened Plate, dan cek API Bulletin 2U Cylindrical Shell. • Dynamic Analysis Dalam analisa dinamis dapat dilakukan solusi frekuensi dan mode shapes, analisa respon

Page 4: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

4

spektrum gempa (Earthquake Response Spectrum Analysis), analisa time domain linear dynamic terhadap gelombang reguler, gelombang acak, ground accelerations and general time-dependent loads, analisa frequency domain terhadap gelombang reguler. • Non-linear Analysis Dalam analisa non-linear berisi analisa inkremen non-linear statis dengan material dan geometris non-linear. Dan analisa dinamis terhadap gelombang regular, gelombang acak, earthquake motions and general time-dependent termasuk beban geometric and material nonlinearities. • Fatigue Analisa Spectral and Discrete Fatigue untuk tubular joints, analisa Spectral and Discrete Fatigue untuk Steel Shape members, analisa Spectral Fatigue untuk Finite Elements utilizing principal stresses dan analisa Random Wave Fatigue utilizing rain-flow counting algorithm. Selain fitur tersebut diatas, SACS mempunyai

fitur model translator. Dimana dalam fitur ini, SACS dapat menerjemahkan atau mengirim dan menerima data ke program lain seperti MOSES, PDMS dan ANSYS. Jadi apabila kita ingin menganalisa program lain menggunakan SACS, kita dapat menggunakannya di dalam model translator.

II.2.2 Gambaran Umum Struktur Jacket

Menurut Hastanto (2000), struktur jacket merupakan bentuk struktur terpancang (fixed Structure) yang terdiri atas beberapa komponen utama yaitu:

Deck/Geladak yang berfungsi sebagai penunjang seluruh kegiatan, tempat fasilitas dan tempat bekerja para personel.

Template/jacket yang berfungsi sebagai penerus beban baik beban vertikal dari geladak maupun beban lateral dari angin, gelombang, arus dan boat impact ke pondasi.

Pondasi yang berfungsi untuk meneruskan beban dari jacket ke tanah.

Selain itu juga ada subkomponen dari masing-masing komponen utama dari jacket yaitu:

Subkomponen dari struktur geladak antara lain: skid beam, plat geladak deck beam,

kaki geladak, longitudinal trusses dan wind girders.

Subkomponen dari jacket antara lain : legs, horizontal dan vertical bracing, launch runner dan detail element (boat landing, barge bumpers dan walkways).

Subkomponen dari posisi antara lain : skirt pile sleeves, skirt pile bracing, piles.

Beberapa sistem jacket yang ada di dunia, mempunyai perbedaan utama mengenai jumlah kaki, konfigurasi sistem bracing serta fungsinya. Jumlah kaki pada setiap jacket bervariasi dari satu hingga delapan kaki dengan membentuk konfigurasi tertentu. Demikian juga dengan sistem konfigurasi bracingnya dari yang sederhana sampai yang kompleks (McClelland, 1986). II.2.3 Penilaian Platform

Dalam penilaian sebuah platform yang sudah ada, terdapat enam komponen proses penilaian yaitu: 1. Pemilihan anjungan (platform selection). 2. Pengkategorian (categorization). 3. Penilaian kondisi (assessment condition). 4. Cek basis desain (design basis check). 5. Analisa (analysis check). 6. Pertimbangan Mitigasi (consideration of

mitigation) Kategori untuk keamanan dan keselamatan adalah sebagai berikut (API RP 2A) :

1. L-1 : adanya personel tanpa evakuasi (manned non evacuated)

2. L-2 : adanya personel dengan evakuasi (manned evacuated)

3. L-3 : tidak ada personel (unmanned) Kategori untuk konsekuensi kegagalan

1. L-1 : kegagalan dengan konsekuensi tinggi (high consequence of failure)

2. L-2 : kegagalan dengan konsekuensi menengah (medium consequence of failure)

3. L-3 : kegagalan dengan konsekuensi rendah (low consequence of failure)

Untuk kondisi perairan di luar Amerika dan Teluk meksiko, pengkategorian yang digunakan hanya dua saja, yaitu : L-1 dan L-3 dengan konsekuensi L-1 dan L-3 (API RP 2A, 2002), yang nantinya akan digunakan sebagai acuan dalam penentuan faktor beban dan RSR.

Page 5: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

5

Gambar 2.2 Kriteria Penilaian anjugan

(sumber : API RP 2; 2002)

L-1 High Consequence of Failure Tingkatan ini berdasarkan atas anjungan utama yang berpotensial pada sumur aliran minyak atau gas asam pada saat struktur mengalami kegagalan. Dengan tambahan, termasuk anjungan dimana penanganannya tidak direncanakan. Anjungan yang mendukung transportasi minyak dan fasilitas penyimpanan untuk pelayaran kapal yang tidak rutin juga dipertimbangkan menjadi konsekuensi tinggi.

L-2 Medium Consequence of Failure Konsekuensi medium atau menengah berdasarkan atas anjungan dimana produksi akan dihentikan selama kejadian desain. Semua sumur yang dapat mengalir pada saat struktur mengalami kegagalan harus berfungsi semuanya, subsurface safety valves yang dirancang dan dicoba berdasarkan regulasi API. Penyimpan minyak dibatasi untuk proses inventori dan transfer pipeline.

L-3 Low Consequence of Failure Kategori konsekuensi rendah berdasarkan pada anjungan minimal dimana produksi dapat dihentikan selama kejadian desain. Semua sumur yang dapat mengalir pada anjungan pada saat gagal harus berfungsi keseluruhannya, subsurface safety valves, yang dirancang dan diuji berdasar regulasi API. Anjungan yang masuk dalam kategori ini mempunyai kedalaman operasi tidak lebih dari 100 feet.

II.2.4 Teori Pembebanan

Dalam suatu proses perancangan bangunan lepas pantai, untuk menentukan kemampuan kerja suatu struktur akan dipengaruhi oleh beban yang terjadi pada bangunan tersebut. Sehingga perancang harus menentukan akurasi atau ketepatan beban yang akan diterapkan dalam perancangan. Menurut (Soedjono, 1999), beban-beban yang harus dipertimbangkan dalam perancangan bangunan lepas pantai adalah sebagai berikut : 1. Beban mati (Dead Load)

Beban mati (dead load) adalah beban dari komponen-komponan kering serta beban-beban peralatan, perlengkapan dan permesinan yang tidak berubah dari mode operasi pada suatu struktur, meliputi: berat struktur, berat peralatan dari permesinan yang tidak digunakan untuk pengeboran atau proses pengeboran.

2. Beban hidup (Live Load) Beban hidup adalah beban yang terjadi pada platform atau bangunan lepas pantai selama dipakai/berfungsi dan tidak berubah dari mode operasi satu ke mode operasi yang lain.

3. Beban akibat kecelakaan (Accidental Load) Beban kecelakaan merupakan beban yang tidak dapat diduga sebelumnya yang terjadi pada suatu bangunan lepas pantai, misalnya tabrakan dengan kapal pemandu operasi, putusnya tali tambat, kebakaran, letusan

4. Beban lingkungan (Environmetal Load) Beban lingkungan adalah beban yang terjadi karena dipengaruhi oleh lingkungan dimana suatu bangunan lepas pantai dioperasikan atau bekerja. Beban lingkungan yang biasanya digunakan dalam perancangan adalah : Beban Gelombang, arus, gempa dan angin.

II.2.5 Kriteria Tegangan Ijin II.2.5.1 Tegangan Tarik Aksial

Tegangan tarik ijin Ft menurut API RP 2A (2002), untuk member silinder ditentukan dari:

Ft = 0.6Fy............................................. (2.1) Dimana : Fy adalah kekuatan yield (Mpa)

II.2.5.2 Tagangan Tekan Aksial

Tegangan tekan ijin Fa menurut API RP 2A (2002), untuk member silinder ditentukan dari:

3

2

2

88

33/5

21

cc

c

C

rKl

C

rKl

FyC

rKl

Fa

untuk Kl/r < Cc .........(2.2)

Page 6: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

6

22

23

12

rKl

EFa

untuk Kl/r Cc..........(2.3)

21212

Fy

ECc

…............................…. (2.4)

Dimana: Cc = Modulus Elastisitas E = Faktor Panjang Efektif L = Panjang tanpa bracing r = jari-jari girasi

II.2.5.3 Tegangan Bending

Tegangan tekan ijin Fb menurut API RP 2A (2002), untuk member silinder ditentukan dari:

FyFb 75.0 Fyt

Duntuk

1500 ................ (2.5)

FyEt

FyDFb

74.184.0

Fyt

D

Fyuntuk

30001500 ........... ...................(2.6)

FyEt

FyDFb

58.072.0

3003000

t

D

Fyuntuk .............................. (2.7)

II.2.5.4 Konsep Analisa Inelastia Non-Linier

Analisa inelastis global dilakukan untuk mengetahui apakah anjungan memiliki cukup kekuatan dan stabilitas untuk tetap menahan kriteria pembebanan dengan overstress lokal dan kerusakan ijin, namun tanpa keruntuhan. Pada level analisa ini, tegangan telah melampaui level elastis dan pemodelan overstress member, sambungan dan pondasi harus mengenali kapasitas ultimate atau juga perilaku post buckling dari batas pembeban elastis (API, 2002).

Pada analisa ultimate, elemen struktur dibiarkan untuk menerima beban yang melebihi kapasitasnya, elemen-elemen dapat meneruskan beban untuk mencapai kapasitasnya, tergantung pada ductility dan perilaku pasca elastis elemen-elemen tersebut. Beberapa elemen mungkin menunjukkan gejala kerusakan dan mengalami inelastis yielding.

II.2.5.5 Batas Tegangan Ultimate

Analisa batas tegangan ultimate dilakukan untuk mengetahui kekuatan maksimum struktur menahan beban yang terjadi. Dalam analisa ini menggunakan metode pushover dengan cara penambahan beban lateral sampai struktur mengalami keruntuhan. Berikut ini merupakan gambar diagram tegangan regangan struktur baja. II.2.6 Reserve Strenght Ratio (RSR)

Struktur jacket mempuyai Reserve Strength Ratio (RSR) yang berbeda untuk setiap arah pembebanan. RSR didefinisikan sebagai rasio dari beban ultimate lateral anjungan menerima pada strukturnya kondisi beban lateral lingkungan 800 tahun, dihitung menggunakan prosedur rekomendasi API RP 2A (2002). RSR dapat dihitung dengan mengunakan persamaan: • RSR = Beban Struktur Collapse Beban kondisi awal = P awal + Total P increment … (2.8) P awal Dimana: P awal =P pada desain level kondisi 800

tahun. P increment =P pada analisa pushover II.2.7 Metode Kegagalan Struktur

Pola kegagalan struktur akan ditinjau pada member struktur, dimana member yang ditinjau adalah member pada bagian jacket, yaitu pada member brace jacket yang mengalami kegagalan. Sehingga apabila ada salah satu atau lebih member brace jacket gagal pada lokasi tertentu, kegagalan member tersebut akan mempengaruhi fungsi dari struktur jacket. Kegagalan member yang dimaksud adalah dimana member tersebut sudah tidak dapat menahan beban yang diterima atau member tersebut dalam kondisi melebihi kekuatan ultimate struktur sehingga mengalami deformasi plastis. Sehingga fungsi dan sistem struktur sudah tidak memenuhi syarat untuk beroperasi karena mengalami collapse. Akibat dari kegagalan struktur tersebut akan menimbulkan resiko yang mempunyai konsekuensi yang berdampak buruk. Bahaya yang ditimbulkan bisa bepengaruh pada keseimbangan ekosistem laut karena merusak lingkungan laut dan menimbulkan kerugian pihak owner struktur. Dan yang lebih bahaya lagi adalah resiko kehilangan nyawa manusia..

Page 7: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

7

II.3 MENGHITUNG DATA GEMPA Beban gempa dirancang untuk keperluan perencanaan struktur tergantung pada besaran percepatan gempa maksimum. Informasi tentang besaran kwantatif dari suatu gempa dinyatakan dalam magnitude dengan skala Richter. Magnitude dari suatu gempa merupakan suatu besaran untuk mengukur energi yang dilepas oleh gempa tersebut, dengan demikian magnitude tidak memberikan gambaran langsung untuk kepentingan peencanaan struktur. Kekuatan gempa pada suatu lokasi bergantung pada karakteristik dari mekanisme sumber gempa, panjangnya perjalanan gelombang seismic. Kondisi geologi dan topografi setempat. Usaha untuk menghitung gerakan seismic pada lokasi tertentu tidaklah praktis maka sebagai gantinya digunakan persamaan empiris yang mengekspresikan parameter gerakan seismic pada suatu lokasi. Persamaan ini biasa disebut sebagai persamaan atenuasi. Dengan melakukan pendekatan dari perhitungan data gempa yang ada selama 105 tahun. II.3.1 Distance

Distance adalah jarak episenter dengan lokasi dimana struktur jacket Bekapai-BL beridiri, sedangkan episenter atau yang juga dikenal dengan kata episentrum adalah titik di permukaan bumi yang berada tepat di atas atau di bawah kejadian lokal yang mempengaruhi permukaan bumi. Episentrum terletak di atas dimana gempa terjadi. Episentrum berlawanan dengan hiposenter, lokasi sebenarnya gempa yang terjadi di dalam bumi.

Menurut (Wahyudi, 2008) Distance dapat dihitung dengan mengunakan rumus :

11.....(2.9) dimana : D = distance LU1 = Posisi derajat lintang utara struktur. LU2 = Posisi derajat lintang utara puast gempa. BT1 = Posisi derajat bujur timur struktur. BT2 = Posisi derajat bujur timur pusat gempa. II.3.2 Hiposenter

Hiposenter adalah titik di dalam bumi yang menjadi pusat gempa bumi atau dapat dikatakan adalah suatu sumber gempa di kedalaman bumi dan lokasi pusat gempa ditentukan berdasarkan pengukuran gelombang seismic. Menurut (Wahyudi, 2008) Jarak hiposenter dengan lokasi struktur dapat dihitung dengan rumus :

.………….….(2.10) Dimana : HP = Jarak hiposenter

Distance = Jarak dari episenter ke lokasi struktur

Depth = Jarak Episenter

Dapat pula digamabarkan hubungan antara episenter, hiposenter dan distance :

Gambar 2.3 garis hubung hiposenter, episenter, distance Dimana :

D = Jarak Episenter ke lokasi struktur (distance)

H = Jarak Episenter R = Jarak Hiposenter II.3.3 Seismic Ground Acceleration

Relasi dari ground acceleration pada lokasi, magnitude, dan jarak hiposeneter. Menurut (Mohraz, 2005) Persamaan atenuasi memiliki banyak pilihan cara dalam melakukan perhitungan, pada studi kasus saat ini saya menggunakan rumus Donovan :

1080 .

25 . … … … … … … … . . … … … . . 2.11

Dimana :

Lokasi episente

Sumber gempa

D

HR

Page 8: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

8

y = Percepatan gempa dalam Cm/det2. R = Jarak hiposenter dalam Km. M = Magnitude dalam skala Richter. II.3.4 Annual Exceedance Rate

Dari hasil perhitungan sebelumnya selanjutnya dihitung annual Exceedance rate (n) dengan hanya mempertimbangkan percepatan dengan suatu rumus sebagai berikut (Wahyudi, 2008) :

… . . . 2.12

Dimana : n = Annual Exceedance rate / tahun II.3.5 Resiko Tahunan

Resiko tahunan sebuah gempa dengan membererikan suatu periode ulang tertentu maka untuk dapat menghitung dengan menggunakan rumus (Wahyudi, 2008) :

1

… … … … … … … … … … … … … … 2.13

Dimana : RA = Resiko tahunan gempa T = Periode ulang gempa (tahunan) II.3.6 Resiko Gempa

Dengan diketahuinya resiko tahunan, dapat ditentukan besarnya resiko gempa untuk suatu periode ulang tertentu selama masa manfaat bangunan, dengan menggunakan rumus sebagai berikut (Wahyudi, 2008) :

RN = 1 – ( 1 – RA )t ............................(2.14)

Dimana : RN = Resiko gempa t = Masa manfaat bangunan (tahun) RA = Resiko tahunan gempa II.3.7 Exceedance Rate Umur Bangunan

Umur bangunan suatu struktur harus memiliki kekuatan terhadap gempa secara maksimal maka dengan memperhitungkan antara periode ulang (T), resiko selama umur bangunan (RN) maka dioperoleh exceedance rate dengan umur bangunan dengan rumus sebagai berikut (Wahyudi, 2008) :

N T

ln 1 R …………………….(2.15)

Dimana :

N = Exceedance rate dengan umur bangunan T = Periode ulang Rn = Resiko selama umur bangunan II.3.8 Faktor Amplifikasi

Setelah melakukan perhitungan dengan mendapatkan nilai dari percepatan tanah maksimum maka akan dilanjutkan melakukan ploting dengan table factor amplifikasi untuk mendapatkan nilai dari percepatan dan perpindahan dengan mengalikan nilai percepatan maksimum dengan harga pada tabel factor amplifikasi sebagai berikut :

Tabel 2.1 Faktor Amplifikasi Gempa

Redaman Kritis (%)

Faktor Amplifikasi Percepatan Perpindahan

A (33 Hz)

B (9 Hz)

C (2.5 Hz)

D (0.25 Hz)

0.5 1.0 4.96 5.95 3.20

2.0 1.0 3.54 4.25 2.50

5.0 1.0 2.61 3.13 2.05

7.0 1.0 2.27 2.72 1.88

10.0 1.0 1.90 2.28 1.70

(sumber : Wahyudi. 2008. Diktat Perhitungan Analisa Gempa.)

Kemudian dari nilai hasil kali dengan table amplifikasi sebelumnya akan didapatkan suatu nilai yang akan diplotkan pada grafik spektrum gempa berikut ini untuk mendapatkan nilai faktor respons gempa ( C ) menurut Spektrum Respons Gempa Rencana :

Page 9: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

9

Gambar 2.4 Grafik Faktor Respon Gempa

II.3.9 Beban Geser Dasar Nominal

Apabila kategori struktur memiliki Faktor Keutamaan strukturnya untuk suatu arah sumbu utama denah struktur dan sekaligus arah pembebanan Gempa Rencana memiliki faktor reduksi gempa R dan waktu getar alami fundamental T1,maka beban geser dasar nominal statik ekuivalen V yang terjadi di tingkat dasar dapat dihitung menurut persamaan (SNI – 1726 – 2002) :

. … … … … … … … … … … … 2.16

Dimana :

C = Nilai faktor respons gempa yang didapat dari spectrum respon

Wt = Berat total gedung R = Faktor reduksi gempa II.4 ACCELERATION DISPLACEMENT

RESPONSE SPECTRA (ADRS) Applikasi dari kapasitas teknik spektra dari

respon sepktrum dan kapasitas dari kurva struktur yang diplotkan di dalam spektrum akselerasi dengan spektrum displacement. Spectra diplotkan dalam formasi yang disebut Acceleration Displacement Response Spectra (ADRS),(Mahaney et al, 1993).

Setiap nilai dari respon kurva spektrum diikuti dengan akselerasi spektra, velocity spectra, displacement spectra dan periode. Untuk mendapatkan pendekatan nilai dari tersebut diatas menurut ATC 40 dapat dihitung dengan menggunakan rumus:

… … … … … … … . . . 2.17

∆ ,

… . … … . . 2.18

Dimana : Vi = Velocity 1 roof = Roof level amplitudo PFi = Participation Factor W = Wight of structure

Dan dilanjutkan dengan memasukkan rumus Acceleration Displacement Respon Spectra (ADRS)

4 … … … … . … … 2.20

Dimana : Ti = Periode Sa = spektrum akselerasi Sd = spectra displacement g = 9.81 m/s2

BAB III METODOLOGI

III.1 DIAGRAM ALIR METODOLOGI

.

Gambar 3.1 Flow chart metodologi

III.1.1 Studi Literatur

Studi literatur dilakukan dengan tujuan untuk lebih memahami tentang konsep perancangan, pembebanan lingkungan, desain kekuatan struktur baja, dan lain-lain. III.1.2 Pengumpulan Data

Pengumpulan data dilakukan dengan tujuan untuk masukan (input) perhitungan yang akan dilakukan dalam perencanaan struktur jacket.

Data yang digunakan pada perencanaan struktur jacket dalam tugas akhir ini merupakan

SELESAI

MENGHITUNG RSR

KESIMPULAN

Mulai

PENGUMPULAN DATA (DATA STRUKTUR, DATA GEMPA DAN PAYLOAD)

PEMODELAN STRUKTUR DENGAN SACS 5.2

PEMBEBANAN STATIS STRUKTUR JACKET

PUSH OVER BEBAN GEMPA 800 TAHUN

PERHITUNGAN DATA GEMPA 800 TAHUN

MENGHITUNG UC (UNITY CHECK)

STUDI LITRATUR

PEMILIHAN TIPE STRUKTUR JACKET

PEMODELAN BATANG TUBULAR DAN

KONTROL

OK

NOT OK

Page 10: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

10

data asli sesuai dengan kondisi dilapangan yang sumbernya diperoleh dari Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan - Institut Teknologi Sepuluh Nopember Surabaya. Struktur jacket Bekapai-BL merupakan jenis jacket convensional yang terpancang (fixed convensional jacket platform) empat kaki yang didesain oleh P.T. MCDERMOTT, Indonesia, dengan masa service life selama 25 tahun. Anjungan dimiliki dan dioperasikan oleh TOTAL E&P, Indonesia. Berikut adalah beberapa gambaran data yang akan digunakan dalam perencanaan struktur jacket : Nama Perusahaan : TOTAL E&P, Indonesia Lokasi : Perairan Selat Makasar –

Indonesia Koordinat : Lintang Utara 0059’45.39” Bujur Timur 117050’42.61” Kedalaman laut : 112 feet (34.13 meter) Berat Platform : 1567 ton (15670 KN) Kecepatan angin kondisi badai sebesar 50 knot dan pada kondisi operasi 25 knot.

III.1.3 Pengumpulan Data Gempa

Pengumpulan data lingkungan yang berupa gempa adalah suatu element yang sangat penting dalam pengerjaan tugas akhir yang saya kerjakan. Dalam hal tersebut melibatkan pihak terkait yang khusus dalam menangani gempa di Indonesia, dikarenakan ke validan data sangat penting untuk suksesnya pengerjaan tugas akhir tersebut.

Di Indonesia sendiri merupakan salah satu satu negara yang memiliki rutinitas gempa sehingga badan terkait disini memiliki validitas data yang tercatat sangat akurat yaitu Badan Meteorologi Klimatologi Dan Geofisika atau yang sering disebut BMKG. BMKG mempunyai status sebuah Lembaga Pemerintah Non Departemen (LPND), dipimpin oleh seorang Kepala Badan. BMKG mempunyai tugas : melaksanakan tugas pemerintahan di bidang Meteorologi, Klimatologi, Kualitas Udara dan Geofisika sesuai dengan ketentuan perundang-undangan yang berlaku. Pada saat ini Badan Meteorologi Dan Geofisika telah memiliki banyak stasiun gempa yang mencatat adanya gempa di seluruh wilayah di Indonesia. Adapun data teknis yang saya dapatkan untuk menunjang tugas akhir yang saya kerjakan adalah sebagai berikut : Daerah Data Zona Gempa : Bujur Timur 1160

dan Lintang Utara 30 Bujur Barat 1240 dan Lintang Utara 30 Bujur Timur 1160 dan Lintang Selatan 60 Bujur Barat 1240 dan Lintang Selatan 60

Zona kedalaman : Minimum = 1.0 KM Maximum = 740.0KM Zona waktu : 22-01-1905 s/d 31-03-

2010 Zona magnitude : Minimum = 2.0 Skala

Richter Maximum = 8.0 Skala

Richter Adapun data gempa selengkapnya dapat dilihat pada lampiran 1.

Gambar 3.2. Struktur platform Bekapai-BL

Gambar 3.3. Peta lokasi struktur platform Bekapai-BL

III.1.4 Pemilihan Tipe struktur Jacket

Pemilihan tipe struktur jacket meliputi jarak antar kaki jacket maupun kaki pada batter, dan pola perangkaan yang akan digunakan dalam merencanakan struktur jacket juga merupkan hal penting dalam pendesainan struktur jacket.

III.1.5 Perhitungan Data Gempa

Perhitungan data gampa adalah dengan melakukan pendekatan perhitungan nilai dari data gempa yang ada sehingga mendapatkan nilai untuk besarnya data gempa selama delapan ratus tahun yang diinginkan. Pembahasan perhitungan

Page 11: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

11

data gemba tersebut akan dibahas lebih lanjut pada bab selanjutnya.

III.1.6 Pemodelan Pada Program Bantu

(SACS 5.2) Setelah semua tahapan penentuan

konfigurasi struktur dan penentuan member serta beban lingkungan maka akan dilakukan permodelan struktur dengan software SACS 5.2 yang meliputi pembuatan model geometri, pendefinisian member section dan material property, tumpuan model beban independen dan kombinasi sesuai standar API-RP2A. Pemodelan struktur jacket Bekapai-BL menggunakan software SACS. Data gambar struktur yang digunakan untuk pemodelan adalah data gambar dari technical drawing SACS. Dimana data gambar tersebut meliputi dimensi jacket dan jenis material. Setelah dimasukkan properties dari tiap-tiap member akan diketahui berat struktur itu sendiri (self weight). Hasil dari modeling dapat dilihat pada gambar 3.2 dan 3.3 berikut ini:

Pemodelan struktur jacket Bekapai-BL menggunakan software SACS. Data gambar struktur yang digunakan untuk pemodelan adalah data gambar dari technical drawing SACS. Dimana data gambar tersebut meliputi dimensi jacket dan jenis material. Setelah dimasukkan properties dari tiap-tiap member akan diketahui berat struktur itu sendiri (self weight). Hasil dari modeling dapat dilihat pada gambar 3.4 dan 3.5 berikut ini:

Gambar 3.4 maindeck dan cellardeck

Gambar 3.5 Jacket, boat landing dan conductors

III.1.7 Perencanaan Batang Tubular dan

Sambungan

1. Batang Tarik Batang tarik lazim dijumpai pada struktur

baja sebagai member (batang) struktural pada struktur rangka berjenis menara. Keadaan batas kekuatan yang berpengaruh bagi suatu batang tarik dapat berupa :

a. Pelelehan penampang lintang bruto batang pada tempat yang jauh dari titik sambungan

b. Retakan dari suatu luas bersih efektif (yakni melalui lubang-lubang) pada sambungan.

2. Batang Tekan Pada umumnya batang tekan akan mengalami buckling (tekuk) atau lenturan tiba-tiba akibat ketidakstabilan sebelum mencapai kekuatan penuh material baja tersebut. Hanya batang yang sangat pendek saja yang dapat dibebani sampai ke tegangan lelehnya. Karena itu diperlukan pengetahuan yang mendalam tentang stabilitas tekan untuk desain batang tekan dalam struktur baja.

III.1.8 Pembebanan Statis Struktur Jacket

Analisis ini ditujuan untuk menentukan kekuatan struktur dalam menahan beban operasional baik dalam kondisi normal maupun kondisi badai yang kemungkinan terjadi selama operasi. Dalam analisis statis dilakukan pengkajian kekuatan struktur API Check dan untuk melihat besarnya tegangan aktual yang teijadi terhadap tegangan ijin struktur dengan Unity Check (Interation ratio Check). Struktur

Page 12: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

12

mempunyai basic load atau beban dasar yang terdiri dari beban deck dan beban jacket seperti pada tabel dibawah berikut ini.

Tabel 3.1 Basic Load

LC DESCRIPTION Unit (KN)

X Y Z

1 Dead Weight of Structure

(Deck) - -

-15670

III.1.9 Menghitung UC (Unity Check)

Dilanjutkan ke tahap analisa statis, dalam analisa ini akan diketahui uc (unity check) dari struktur. Apabila dalam tahap ini mengalami kegagalan maka perlu diadakan peninjauan ulang struktur jacket Bekapai-BL. Hasil UC<=1.0 sebagai batas maximum yang dapat diterima.

III.1.10 Analisa Ultimate Strength Nonlinear

Pushover

Analisa kekuatan struktur ultimate menggunakan metode pushover dalam SACS 5.2 merupakan analisa statis nonlinear. Untuk mendapatkan solusi hasil dari load case, beban diberikan secara inkremen yang digunakan untuk melakukan analisa statis nonlinear pushover dengan SACS 5.2.

III.1.11 RSR (Reserve Strenghth Ratio)

Analisa Pushover

Ada dua jenis load case dalam pemodelan beban analisa pushover. Load case pertama yaitu beban vertikal yang bekerja pada struktur. Beban vertikal ini termasuk beban dek meliputi deadload dan live load. Kemudian loadcase yang kedua adalah beban horisontal yang merupakan beban lingkungan kondisi ekstrim, yaitu beban gelombang, angin dan arus.

Dalam analisa pushover, struktur akan dikenai beban vertikal yang merupakan beban konstan. Kemudian beban horisontal akan ditingkatkan dengan faktor beban yang telah ditentukan sampai struktur tersebut kolaps. Faktor beban yang menyebabkan struktur kolaps memberikan Reserve Strength Ratio (RSR) terutama akibat beban lingkungan ekstrim pada masing-masing arah pembebanannya. Melakukan analisa pushover pada struktur jacket Bekapai-BL dimana analaisa tersebut menghasilkan nilai RSR untuk mengetahui apakah jacket platform memiliki cukup kekuatan dan stabilitas untuk

tetap menahan beban akibat overstress lokal yang melebihi tegangan ijin, yang berakibat keruntuhan.

BAB IV

ANALISA DATA GEMPA

IV.1 UMUM

Beban gempa dirancang untuk keperluan perencanaan struktur tergantung pada besaran percepatan gempa maksimum. Informasi tentang besaran kwantatif dari suatu gempa dinyatakan dalam magnitude dengan skala Richter. Magnitude dari suatu gempa merupakan suatu besaran untuk mengukur energi yang dilepas oleh gempa tersebut, dengan demikian magnitude tidak memberikan gambaran langsung untuk kepentingan peencanaan struktur. Kekuatan gempa pada suatu lokasi bergantung pada karakteristik dari mekanisme sumber gempa, panjangnya perjalanan gelombang seismic. Kondisi geologi dan topografi setempat. Usaha untuk menghitung gerakan seismic pada lokasi tertentu tidaklah praktis maka sebagai gantinya digunakan persamaan empiris yang mengekspresikan parameter gerakan seismic pada suatu lokasi. Persamaan ini biasa disebut sebagai persamaan atenuasi. Dengan melakukan pendekatan dari perhitungan data gempa yang ada selama 105 tahun. Data perhitungan selengkapnya terdapat pada lampiran 2. IV.1.1 Distance

Dari persamaan (2.9) Menurut (Wahyudi, 2008) Distance dapat dihitung dengan mengunakan rumus :

0.9959 1.5 117.84 120 111

366.02

dimana : D = distance LU1 = Posisi derajat lintang utara

struktur. LU2 = Posisi derajat lintang utara

puast gempa. BT1 = Posisi derajat bujur timur

struktur. BT2 = Posisi derajat bujur timur

pusat gempa.

Page 13: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

13

IV.1.2 Hiposenter

Dari persamaan (2.10). Menurut (Wahyudi, 2008) Jarak hiposenter dengan lokasi struktur dapat dihitung dengan rumus :

366.02 33 367.51

Dimana : HP = Jarak hiposenter Distance = Jarak dari episenter ke lokasi struktur Depth = Jarak Episenter IV.1.3 Seismic Ground Acceleration

Dari persamaan (2.11) relasi dari ground acceleration pada lokasi, magnitude, dan jarak hiposeneter. Menurut (Mohraz, 2005) Persamaan atenuasi memiliki banyak pilihan cara dalam melakukan perhitungan, pada studi kasus saat ini saya menggunakan rumus Donovan :

1080 . .

367.51 25 . 10.5 /

Dimana : y = Percepatan gempa dalam Cm/det2. R = Jarak hiposenter dalam Km. M = Magnitude dalam skala Richter. IV.1.4 Menghitung Annual Exceedance Rate

Dari persamaan (2.12) dari hasil perhitungan sebelumnya selanjutnya dihitung annual Exceedance rate (n) dengan hanya mempertimbangkan percepatan dengan suatu rumus sebagai berikut (Wahyudi, 2008) :

634329

0.0146

Dimana : n = Annual Exceedance rate / tahun IV.1.5 Menentukan Garis Regresi

Dari harga-harga yang didapat nilai ln pada persamaan-persamaan (2.11) dan persamaan (2.12) dibuat suatu hubungan polynomial dengan mengambil suatu persamaan regressi sebagai berikut :

Gambar 4.1 Grafik Hubung Regresi Polynomial

IV.1.6 Resiko Tahunan

Dari persamaan (2.13) dari perhitungan yang sebelumnya maka akan dicari resiko tahunan gempa periode ulang 800 tahun maka :

1

8000.00125

Dimana : RA = Resiko tahunan gempa T = Periode ulang gempa (tahunan) IV.1.7 Resiko Gempa

Dengan mengacu persamaan (2.14) dengan diketahuinya resiko tahunan, dapat ditentukan besarnya resiko gempa terhadap bangunan untuk suatu periode ulang tertentu selama masa manfaat bangunan, dimana umur rencana bangunan adalah 20 tahun dengan menggunakan rumus sebagai berikut (Wahyudi, 2008) :

RN = 1 – ( 1 – 0.00125 )20 = 0.0247 Dimana : RN = Resiko gempa t = Masa manfaat bangunan ( tahun) RA = Resiko tahunan gempa IV.1.8 Exceedance Rate Dengan Umur

Bangunan Dari persamaan (2.15) umur bangunan suatu struktur harus memiliki kekuatan terhadap gempa secara maksimal maka dengan memperhitungkan antara periode ulang (T), resiko selama umur bangunan (RN) maka dioperoleh exceedance rate dengan umur bangunan dengan rumus sebagai berikut (Wahyudi, 2008) :

1

800ln 1 0.0247

0.00003127 Dimana :

Page 14: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

14

N = Exceedance rate dengan umur bangunan T = Periode ulang Rn = Resiko selama umur bangunan IV.1.9 Percepatan Tanah Maksimum

Mengingat bahwa umur bangunan struktur jacket Bekapai-BL adalah 20 Tahun maka untuk perencanaan beban gempa dengan kemungkinan terjadi selama umur bangunan dapat direkomendasikan dengan periode ulang 800 tahun. Gempa rancangan ini dapat dipakai sebagai dasar kreteria SSE (Safe Shutdown Earthquake) untuk lokasi struktur jacket Bekapai-BL dengan data : Periode ulang (T) = 800 tahun Umur rencana (t) = 20 tahun Faktor redaman = 5 % Natural periode bangunan = 1.76 Dengan memasukkan hasil analisa regresi polynomial pada gambar grafik (4.1) maka untuk mendapatkan nilai percepatan tanah maksimum dapat diperoleh dengan rumus : ln Y = - 0.56ln(N) + 0.287 Maka : Y = exp 0.287-0.56 ln(N) = 443.99 cm / s2

= 0.45274509 g IV.1.10 Faktor Amplifikasi

Setelah melakukan perhitungan dengan mendapatkan nilai dari percepatan tanah maksimum maka akan dilanjutkan melakukan ploting dengan table factor amplifikasi (2.1) untuk mendapatkan nilai dari percepatan dan perpindahan dengan mengalikan nilai percepatan maksimum dengan hasil pada tabel factor amplifikasi sebagai berikut :

Tabel 4.1 Hasil Faktor Amplifikasi Gempa Redaman Kritis (%)

Faktor Amplifikasi

Percepatan Perpindahan

0.5 A(33Hz)

B (9 Hz)

C(2.5Hz) D (0.25 Hz)

SSE

0.45 1.18 1.42 0.93

OBE 0.23 0.59 0.71 0.46

Kemudian dari nilai hasil kali dengan table amplifikasi sebelumnya akan didapatkan suatu nilai yang akan diplotkan pada grafik spektrum gempa berikut ini untuk mendapatkan nilai faktor respons

gempa ( C ) menurut Spektrum Respons Gempa Rencana.

Gambar 4.2 Grafik Hasil Faktor Respon Gempa

Maka dari hasil ploting pada grafik faktor respon gempa didapatkan nilai C sebesar 1.1 SSE.

IV.1.11 Beban Geser Dasar Nominal

Pada persamaan (2.16) apabila kategori struktur memiliki Faktor Keutamaan strukturnya untuk suatu arah sumbu utama denah struktur dan sekaligus arah pembebanan Gempa Rencana memiliki faktor reduksi gempa R dan waktu getar alami fundamental T1,maka beban geser dasar nominal statik ekuivalen V yang terjadi di tingkat dasar dapat dihitung menurut persamaan (SNI – 1726 – 2002) : Maka :

1.1 13.5

1567

= 228.334 T = 4924.8 KN Dimana :

C = Nilai Faktor Respons Gempa yang didapat dari Spektrum Respon

Wt = Berat Total Gedung R = Faktor Reduksi Gempa

Dari perhitunga diatas maka didapatkan nilai beban statik ekuvalen dari gempa rencana yaitu sebesar 4924.8 KN.

BAB V

Page 15: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

15

PEMODELAN DAN PEMBEBANAN STRUKTUR JACKET

V.1 UMUM

Jacket adalah tiang-tiang disekitar sumur ekplorasi yang berfungsi untuk melindungi pile agar tetap pada posisinya, menyokong deck dan melindungi conductor serta menyokong sub-struktur lainnya seperti boat landing, barge bumper dan lain-lain. Element utama struktur jacket adalah sebagai berikut:

Kaki jacket Braces (penguat) vertikal, horisontal dan

diagonal Joint pertemuan antara kaki jacket dan braces Skirt pile Boat landing, barge bumper, riser, conductor

bracing, mud-muts dan lain sebagainya.

Jacket dipasang mulai dari garis mudline sampai deck substruktur. Kaki jacket mengarahkan pile sewaktu pemancangan pile. Jacket termasuk elemen struktur yang mendasar pada platform yang memberi dukungan terhadap tumbukan kapal yang berlabuh, sistem proteksi terhadap korosi, sistem navigasi dan lain-lain. Agar dapat menyokong semua beban yang dikenakan terhadap struktur jacket dan melindungi bagian penting lainnya dari offshore structure, maka struktur jacket harus dirancang sedemikian rupa agar sesuai dengan kondisi lingkungan, beban yang dipikul, dan lain sebagainya. V.2 PENGENALAN PROGRAM BANTU

SACS 5.2

Seluruh pemodelan dan perhitungan dari perancangan struktur jacket pada Tugas Akhir ini menggunakan program bantu SACS 5.2.

SACS 5.2 adalah salah satu perangkat lunak (software) untuk analisa struktur baik struktur lepas pantai maupun untuk struktur teknik sipil yang dikembangkan oleh Engineering Dynamics Inc. Kelebihan dari software ini adalah user friendly sehingga mudah untuk menjalankannya, seperti mempermudah dalam desain, memodelkan beban lingkungan seperti beban gelombang, arus, angin, marine growth, dan beban beban yang lain. Selain itu proses penganalisaannya lebih mudah seperti analisa statis (inplace analysis), analisa dinamis, fatigue analysis dan macam – macam output yang ingin ditampilkan berdasarkan codes yang dipakai.

Selain itu, SACS 5.2 memiliki beberapa modul untuk pemodelan struktur dan beban, selain itu juga modul-modul untuk analysis processing, post processing, dan menampilkan ouput perhitungan dan perencanaan.

V.3 DATA PERANCANGAN DAN

PEMBEBANAN STRUKTUR Pemodelan struktur jacket dilakukan dengan bantuan software SACS 5.2. Semua data yang digunakan pada pemodelan struktur jacket dalam tugas akhir ini, baik berupa data beban, maupun data struktur merupakan data asli sesuai dengan kondisi yang ada dilapangan. Dengan kondisi data gempa pada perairan dan data yang sesuai yang didapatkan dari Badan Meteorologi Klimatologi Dan Geofisika atau yang sering disebut BMKG. V.3.1 Data Beban Geladak

Beban yang digunakan dalam input data untuk perancangan struktur jacket adalah beban geladak/deck (topside loads) yang nantinya akan didistribusi ke kaki geladak (deck leg). Data beban yang akan digunakan adalah sebagai berikut :

Tabel 5.1 Data beban geladak/topside loads

LOAD LOAD QUANTITY Minimum Dead Load 482 tonnes Maximum Dead Load 1567 tonnes (sumber : TOTAL INDONESIA BEKAPAI BL DESIGN

APPRAISAL )

V.3.2 Data Lingkungan

Kondisi lingkungan merupakan faktor dengan pengaruh terbesar pada kebutuhan kekuatan dan ruangan minimal bagi sebuah anjungan lepas pantai. Angin, badai, arus, dan gelombang tidak hanya membawa beban lateral pada anjungan, namun juga mempersulit dukungan logistik bahan-bahan yang dibutuhkan bagi kegiatan di anjungan, yang kemudian akan memperbesar jumlah storage yang dibutuhkan, dan secara mencolok akan memperbesar payload, yaitu beban pada modul geladak anjungan. Selanjutnya, akibat payload membesar, akan dibutuhkan struktur yang lebih besar. Data lingkungan yang digunakan dalam perancangan struktur jacket pada tugas akhir ini adalah pada saat kondisi badai dengan periode ulang 100 tahun.

V.3.3 Kedalaman Laut

Kedalaman laut merupakan ukuran untuk memerlukan besarnya tantangan yang harus

Page 16: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

16

dihadapi oleh sebuah struktur anjungan lepas pantai. Untuk kondisi Iingkungan yang bagaimanapun (gempa, angin, gelombang, dsb), pengaruh kondisi Iingkungan ini bertambah dengan pertambahan kedalaman. Kedalaman ini juga akan menentukan tinggi struktur penyangga yang terendam air, dan ukuran, bentuk, dan berat struktur rangka penyangga ini akan menetukan pemilihan jenis anjungan dan akan mempengaruhi persyaratan yang harus dipenuhi oleh galangan fabrikasi dan tongkang pengangkat yang dibutuhkan.

Tabel 5.2 Data Kedalaman Laut

Minimum Water Depth

36.95 meter

Maximum Water Depth

34.45 meter

(sumber : TOTAL INDONESIA BEKAPAI BL DESIGN APPRAISAL )

V.3.4 Marine Growth

Struktur yang terbenam di dalam air akan mengalami pertambahan luas area melintang akibat adanya marine growth. Marine growth ditimbulkan oleh organisme laut yang menempel pada struktur. Pertambahan luas melintang ini mengakibatkan gaya gelombang yang diterima oleh struktur menjadi lebih besar.

Ukuran ketebalan marine growth bervariasi pada tiap bagian struktur, dengan ketebalan maksimum adalah 5.0 inch.

c. Data Gempa

Data lingkungan yang berupa gempa adalah data ntuk memastikan bahwa tidak terjadi kerusakan struktur akibat goncangan gempa bumi (earthquake), Untuk memastikan struktur telah mempunyai ukuran elemen yang cukup untuk menerima beban gempa bumi serta bertujuan untuk memastikan jacket yg terletak pada daerah aktif gempa tidak runtuh (collapse) akibat gempa jarang (800 s/d 1000 th). Dari perhitungan yang sudah dilakukan diatas maka didapatkan nilai kekuatan sebesar 0.4 g atau sebesar 4924.8 KN.

V.3.5 Data Struktur

Pemodelan struktur jacket dengan menggunakan program SACS 5.2 yang didalamnya akan dimasukkan data profil yang digunakan dalam desain jacket. Dengan data profil member sebagai berikut:

Tabel 5.3 Dimensi dan jenis profil member struktur jacket

(sumber : TOTAL INDONESIA BEKAPAI BL DESIGN APPRAISAL )

Data dimensi struktur : Tinggi chord di atas permukaan laut :

2 meter Tinggi chord di bawah permukaan laut :

30 meter Tinggi jacket leg dari dasar laut :

40.35 meter Tinggi riser dari lantai atas-bawah :

38.35 meter V.4 PEMODELAN STRUKTUR

Pemodelan struktur dilakukan dengan menggunakan bantuan software SACS 5.2 dengan memberikan simbol/nama pada masing-masing joint dan member struktur yang membentuk struktur jacket tersebut, sesuai dengan ukuran dan karakteristiknya.

Keterangan Profil Member

Horizontal Brace I (BC1) Horizontal Brace II (BCII) Diagonal Brace I (DB I) Diagonal Brace II (DB I1) Jacket Leg (JL1) Conductor (RI) Conductor Guide (RS I) Conductor Guide (RS II) Batter / kemiringan

OD 16 in; WT 0,5 in OD 20 in; WT 0,5 in OD 16 in; WT 0,5 in OD 12 in; WT 0,5 in OD 35.5 in;WT 1.25 in OD 12 in; WT 0,25 in OD 34 in; WT 0,5 in OD 34 in; WT 1 in 1 : 10

Asumsi pemodelan platform

Page 17: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

17

Gambar 5.1 Tampak jacket dalam tampilan dua dimensi

Gambar 5.2 Bentuk dan dimensi ketinggian struktur jacket

(feet)

Pada Gambar 5.1 dan Gambar 5.2 dapat dilihat pemodelan struktur jacket tipe kaki empat yang direncanakan dalam Tugas Akhir ini. Pola perangkaan (model brace) yang digunakan dalam perencanaan struktur

jacket adalah pola K atau diagonal tunggal, dengan alasan sebagai berikut : Lokasi struktur jacket terletak pada

daerah perairan dangkal sehingga tidak membutuhkan kekakuan tinggi serta tidak ada atau terletak pada daerah dengan gaya seismik rendah

Mempunyai jumlah titik pertemuan batang (joint) yang lebih sedikit sehingga dapat meminimalisir pengaruh gelombang dan korosi

V.4.1 Pemodelan Joint Struktur Jacket

Pada struktur jacket terdapat pertemuan antar member yang disebut dengan joint dimana setiap joint memiliki penamaan tersendiri pada program SACS 5.2 sehingga kita dapat mengetahui posisi dari joint pada struktur jacket tersebut dan berbeda-beda pada masing-masing joint.

Gambar 5.3 Contoh penamaan joint struktur jacket

Jumlah joint yang terdapat pada struktur jacket tipe kaki empat dalam Tugas Akhir ini adalah sebanyak 423 joint. Detail dari penamaan joint struktur jacket ini adalah sebagai berikut: 001P, 019P, 081P, 099P, 101P, 119P,

181P, 199P, 201P, 219P, 281P, 299P, 301P, 319P, 381P, 399P, 401P, 419P, 481P, 499P, 501P, 519P, 581P, 599P.

101L, 119L, 181L, 199L, 201L, 219L, 281L, 299L, 301L, 319L, 381L, 399L, 401L, 419L, 481L, 499L, 501L, 519L, 581L, 599L, 601L, 619L, 681L, 699L, 701L, 719L, 781L, 799L.

6.2 m (top of jacket)

-40.15 m (bottom of jacket)

-6.68 m (lantai 2)

-20.21m (lantai 3)

-30 m

-34.15 m (dasar laut)

4.2 m (lantai 1)

+00.00 (mean sea level)

1137

519L 599L

1135

581L501L

1142

1134

1148

1138

1136

11471146

1171 1163

1139

11451144

1143

Page 18: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

18

1002, 1003, 1005, 1006, 1007, 1008, 1009, 1020, 1022, 1025, 1028, 1032, 1033, 1036, 1041, 1042, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1078, 1079, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1229, 1234, 1235, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350. 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1373, 1374, 1375, 8001, 8002, 8003, 8004, 8005, 8006, 8007, 8008, 8009, 8020, 8021, 8022, 8028, 8029, 8030, 8031, 8032, 8033, 8034, 8035, 8036, 8037, 8038, 8039, 8040, 8041, 8042, 8043, 8044, 8045, 8046,

8047, 8048, 8049, 8050, 8051, 8052, 8053, 8054, 8055, 8056, 8057, 8058, 8059, 8060, 8061, 8062, 8063, 8064, 8065, 8066, 8067, 8068, 8069, 8070, 8071, 8072, 8073, 8074, 8075, 8076, 8077, 8078, 8079.

V.4.2 Pemodelan Member Struktur

Jacket

Member struktur jacket merupakan elemen-elemen struktur yang terdiri dari profil-profil yang tersusun sehingga membentuk suatu struktur. Pemodelan member pada struktur jacket dalam Tugas Akhir ini adalah sesuai dengan karakteristik dan jenis elemen yang dibutuhkan dalam merancang struktur jacket yang direncanakan.

Gambar 5.4 Detail member struktur jacket

Detail dari member tersebut adalah : 1. BC I

JL

BC

BC

DB

DB

R

RSRS

Page 19: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

19

Adalah Horizontal Barce yang memiliki ukuran dan karakteristik sebagai berikut : - Outer Diameter (OD) : 40.640 cm - Web Thickness (WT) : 1.905 cm - E Modulus : 20000 kN/sq

cm - G Modulus : 8000 kN/sq

cm - Yield Strength : 24.800 kN/sq

cm - Density : 7.849 ton/m3 - Total Length : 56.4640 m

2. BC II

Adalah Horizontal Barce yang memiliki ukuran dan karakteristik sebagai berikut : - Outer Diameter (OD) : 40.640 cm - Web Thickness (WT) : 1.270 cm - E Modulus : 20000 kN/sq

cm - G Modulus : 8000 kN/sq

cm - Yield Strength : 24.800 kN/sq

cm - Density : 7.849 ton/m3 - Total Length : 141.3240 m

3. DB I

Adalah Diagonal Barce yang memiliki ukuran dan karakteristik sebagai berikut : - Outer Diameter (OD) : 45.720 cm - Web Thickness (WT) : 1.905 cm - E Modulus : 20000 kN/sq

cm - G Modulus : 8000 kN/sq

cm - Yield Strength : 24.800 kN/sq

cm - Density : 7.849 ton/m3 - Total Length : 74.9960 m

4. DB II Adalah Diagonal Brace yang memiliki ukuran dan karakteristik sebagai berikut : - Outer Diameter (OD) : 50.800 cm - Web Thickness (WT) : 1.270 cm - E Modulus : 20000 kN/sq

cm - G Modulus : 8000 kN/sq

cm - Yield Strength : 24.800 kN/sq

cm - Density : 7.849 ton/m3 - Total Length : 487.6460 m

5. RS I Adalah Conductor Guide atau bisa juga disebut sebagai Riser Guide yang memiliki ukuran dan karakteristik sebagai berikut : - Outer Diameter (OD) : 30.480 cm - Web Thickness (WT) : 0.952 cm - E Modulus : 20000 kN/sq

cm - G Modulus : 8000 kN/sq

cm - Yield Strength : 24.800 kN/sq

cm - Density : 7.849 ton/m3 - Total Length : 595.71 m

6. RS II

Adalah Conductor Guide atau bisa juga disebut sebagai Riser Guide yang memiliki ukuran dan karakteristik sebagai berikut : - Outer Diameter (OD) : 40.640 cm - Web Thickness (WT) : 1.270 cm - E Modulus : 20000 kN/sq

cm - G Modulus : 8000 kN/sq

cm - Yield Strength : 24.800 kN/sq

cm - Density : 7.849 ton/m3 - Total Length : 254.229 m

7. RI Adalah Riser yang memiliki ukuran dan karakteristik sebagai berikut : - Outer Diameter (OD) : 76.200 cm - Web Thickness (WT) : 2.540 cm - E Modulus : 20000 kN/sq

cm - G Modulus : 8000 kN/sq

cm - Yield Strength : 24.800 kN/sq

cm - Density : 7.849 ton/m3 - Total Length : 460.2 m

8. JL1

Adalah Jacket Leg yang merupakan kaki jacket atau bisa disebut juga sebagai chord yang memiliki ukuran dan karakteristik sebagai berikut : - Outer Diameter (OD) : 90.170 cm - Web Thickness (WT) : 3.175 cm - E Modulus : 20000 kN/sq

cm

Page 20: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

20

- G Modulus : 8000 kN/sq cm

- Yield Strength : 24.800 kN/sq cm

- Density : 7.849 ton/m3 - Total Length : 187.244 m

V.4.3 Offsetting

Offseting dilakukan setelah setiap member pembentuk struktur jacket diberi nama sesuai dengan ukuran dan karakteristiknya. Offsetting dilakukan terhadap setiap joint pertemuan ujung member yang terdapat penumpukan.

Offsetting, adalah upaya memindahkan ujung-ujung setiap member dengan mengubah-ubah koordinat sumbu X, Y, dan Z pada ujung-ujung setiap member yang bertemu pada setiap joint pembentuk struktur jacket pada posisi sedemikian hingga. Sehingga setiap member yang bertemu pada joint tidak mengalami over stress akibat penumpukan ujung member pada joint. Karena hal ini akan berpengaruh kepada UC (Unity Check) pada setiap joint. Semakin rapi offsetting, maka semakin baik pula pemodelannya. Dalam offsetting, sumbu yang digunakan adalah sumbu lokal struktur.

Berikut ini akan ditampilkan pemodelan member yang sebelum dan sesudah dilakukan offsetting pada beberapa joint :

Joint 581L :

Gambar 5.5 Tampak joint 581L sebelum dilakukan offsetting

Gambar 5.6 Tampak joint 581L sesudah dilakukan offsetting

Joint 319L :

Gambar 5.7 Tampak joint 319L sebelum dilakukan offsetting

Gambar 5.8 Tampak joint 319L sesudah dilakukan offsetting

Joint 519L :

Gambar 5.9 Tampak joint 519L sebelum dilakukan offsetting

Page 21: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

21

Gambar 5.10 Tampak joint 519L sesudah dilakukan

offsetting

Joint 1138 :

Gambar 5.11 Tampak joint 1138 sebelum dilakukan

offsetting

Gambar 5.12 Tampak joint 1138 sesudah dilakukan

offsetting

V.4.4 Pemodelan Akhir Struktur Jacket Bekapai - BL Dengan Program SACS 5.2

Gambar 5.13 Tampak isometri struktur jacket

Gambar 5.14 Tampak atas struktur jacket Bekapai

– BL

Gambar 5.15 Tampak bawah struktur jacket

Bekapai – BL

Page 22: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

22

Gambar 5.16 Tampak jacket Bekapai – BL pada bentang tengah

Gambar 5.17 Tampak depan dan belakang struktur jacket Bekapai – BL

Gambar 5.18 Tampak samping kiri dan kanan struktur jacket

Bekapai-BL

V.5 PEMODELAN BEBAN STATIS

Pemodelan statis pada struktur jacket dirancang dengan perhitungan bahwa struktur jacket menerima beban deck/platform yang berupa gaya aksial kebawah sebesar 1567 Ton ≈ 15670 KN yang disalurkan secara merata pada masing-masing kaki jacket sebesar 3917.5 KN. Berikut ini akan ditampilkan gambar pembebanan akibat beban deck/platform pada struktur jacket.

Gambar 5.19 Penyaluran beban deck/platform pada

struktur jacket V.6 PEMODELAN BEBAN PUSHOVER

Ada dua jenis load case dalam pemodelan beban analisa pushover. Load case pertama yaitu beban vertikal yang bekerja pada struktur. Beban vertikal ini termasuk beban dek meliputi deadload yaitu 1567 Ton ≈ 15670 KN yang disalurkan secara merata pada masing-masing kaki jacket sebesar 3917.5 KN. Kemudian loadcase yang kedua adalah beban horisontal yang merupakan beban lingkungan kondisi ekstrim, yaitu beban force dari gempa sebesar 4924.8 KN yang dibagi merata pada empat joint paling atas yang memiliki masa paling besar pada masing-masing joint menerima beban sebesar 1231.2 KN. Dalam

3917.5 KN

3917.5 KN 3917.5 KN

3917.5 KN

Page 23: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

23

analisa pushover, struktur akan dikenai beban vertikal yang merupakan beban konstan. Kemudian beban horisontal akan ditingkatkan dengan faktor beban yang telah ditentukan sampai struktur tersebut kolaps. Faktor beban yang menyebabkan struktur kolaps memberikan Reserve Strength Ratio (RSR) terutama akibat beban lingkungan ekstrim pada masing-masing arah pembebanannya.

Gambar 5.20 Penyaluran beban pushover pada struktur ```````````````jacket Bekapai-BL

V.7 KOMBINASI PEMBEBANAN

Dari beban-beban yang ada, akan didefinisikan beban gabungan (combined load) dari tiap arah beban gempa. Pada program SACS 5.2 setelah seluruh desain struktur selesai didesain kemudian seluruh beban-beban yang akan digabungkan dimasukkan sebagai input data.

Kombinasi pembebanan yang dilakukan adalah kondisi saat statis karena data platform

yang digunakan merupakan data fix, dengan kata lain seluruh beban platform yang ada digabungkan dengan seluruh beban statis, berat sendiri, dan beban pushover yang kemudian disalurkan sesuai arah pembebanan.

BAB VI ANALISIS STRUKTUR

VI.1 UMUM

Setelah seluruh tahap pemodelan struktur jacket selesai dilakukan, langkah selanjutnya adalah memasukkan seluruh beban yang ada untuk sesuai dengan pembebanan yang dibutuhkan untuk analisis struktur jacket.

VI.2 ANALISIS STATIS

VI.2.1 Massa Total (Total Mass)

Dalam hal ini analisis statis dilakukan untuk mendapatkan nilai massa total (total mass) pada struktur jacket. Dari hasil pemodelan SACS 5.2 dapat diketahui massa struktur secara keseluruhan (total mass) sebesar 5818.766 KN (581.8766 ton).

Massa total struktur didapatkan dari hasil analisis SACS 5.2 setelah memasukkan seluruh data struktur jacket yang telah dibuat yang kemudian dilakukan proses running. Setelah proses running selesai dilakukan, kemudian untuk melihat massa total pada hasil running dapat dilihat pada toolbar Load dan selanjutnya dipilih menu Self Weight sehingga muncul nilai massa total struktur sebesar 5818.766 KNseperti yang terlampir pada Lampiran 3.

VI.2.2 Titik Berat (Center of Gravity)

Analisis statis juga digunakan untuk mencari letak dari titik berat/center of gravity. Berdasarkan perhitungan SACS 5.2, didapatkan letak titik berat (center of gravity) dari struktur jacket dengan uraian sebagai berikut :

X : -1.241 meter Y : - 0.048 meter Z : -16.889 meter

Letak titik berat (center of gravity)

struktur didapatkan dari hasil analisis SACS 5.2 pada file saclst.bekapai pada bagian summary of seastate generated dead and bouyancy loads seperti terdapat pada Lampiran 3.

3917.5 KN

3917.5 KN

3917.5 KN

3917.5 KN 1231.2 KN

1231.2 KN

1231.2 KN

1231.2 KN

Page 24: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

24

Gambar 6.1 Letak Center of Gravity struktur jacket

Gambar 7.1 menunjukkan letak dari center of gravity (titik berat) dari struktur jacket. Letak titik tersebut ditunjukkan dengan titik hitam bulat yang terletak pada koordinat (X = -1.241; Y = -0.048; Z = -16.889) dalam satuan meter.

VI.2.3 Pusat Daya Apung (Center of

Buoyancy)

Berdasarkan perhitungan SACS 5.2, didapatkan letak pusat daya apung (center of buoyancy) dari struktur jacket dengan uraian sebagai berikut :

X : -1.162 meter Y : -0.068 meter Z : -20.225 meter

Letak titik pusat daya apung (center of buoyancy) struktur didapatkan dari hasil analisis SACS 5.2 pada file saclst.bekapai pada bagian summary of seastate generated dead and buoyancy loads, sehingga muncul letak center of buoyancy seperti yang terlihat pada Gambar 7.2.

Gambar 6.2 Letak Center of Buoyancy struktur jacket

Gambar 7.2 menunjukkan letak dari

center of buoyancy (pusat apung) dari struktu jacket. Letak titik tersebut ditunjukkan dengan titik hitam bulat yang terletak pada koordinat (X = -1.162; Y = -0.068; Z = -20.225) dalam satuan feet. Untuk hasil secara lengkap dapat dilihat pada Lampiran 3.

VI.2.4 Tahapan Analisis Statis Linier

Langkah-langkah yang harus dilakukan adalah : dimana isi file tersebut antara lain : a. SACINP b. JCNINP SACINP Memuat data modelling

struktur, properties, beban, seastate.

JCNINP Merupakan file yang berisi tentang penjelasan sambungan (joint can).

Buka program SACS

Page 25: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

25

Gambar 6.3 Tampilan SACS 5.2 Kemudian lihat anak panah sesuai urutan nomornya, penjelasannya sebagai berikut : 1. Gunakan linear static analysis untuk

melakukan perhitungan statis. 2. Buka Start Wizard, dan pilih nama file

sacinp yang akan di analisis. Setelah itu akan tampil Analysis Options. Check list sesuai kebutuhan perhitungan. Dalam option analysis ini ada beberapa option yang masuk dalam proses perhitungan, antara lain : a. general b. seastate c. foundation d. element check e. postvue f. joint check g. dll. Adapun yang kita butuhkan dalam laporan statis nanti harus didefinisikan, antara lain;

Gambar 6.4 Analysis Options untuk analisa statis pada opsi

Foundation

Gambar 6.5 Analysis Options untuk analisa statis pada opsi

Element Check

Gambar 6.6 Analysis Options untuk analisa statis pada opsi Postvue

Gambar 6.7 Analysis Options untuk analisa statis pada opsi Joint Check

1

2

Page 26: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

26

Gambar 6.8 Tampilan saat proses check list selesai

Setelah proses check list selesai, akan

tampil seperti Gambar 7.8. Selanjutnya masuk dalam proses running, jalankan atau klik Run, tunggu sampai proses analisis selesai dilakukan oleh program SACS. Apabila berhasil maka akan ada 2 output :

a. saclst : merupakan text output hasil proses perhitungan

b. pvdb : merupakan gambar yang dapat memperlihatkan gaya-gaya sesuai model dan pembebanannya.

Kemudian buka file saclst, dari file

tersebut kita akan mengambil nilai-nilai hasil analisis terhadap struktur platform.

VI.2.5 Hasil Perhitungan Statis Analisis

Dari hasil running program SACS 5.2 untuk perhitungan analisis statis (beban mati) pada struktur jacket dapat dilihat output yang dihasilkan adalah :

1. Maximum Joint Displacements :

Dari hasil analisa didapatkan maximum joint deflection pada masing-masing arah X, Y, dan Z. Untuk hasil lebih lengkap, dapat dilihat pada Lampiran 3 (Static Analysis Summary) pada bagian joint deflections and rotations.

2. Maximum Unity check :

Unity check adalah Critical condition stress dibagi Maximum condition stress. Menurut API RP 2A WSD suatu struktur dikatakan aman jika struktur tersebut mempunyai unity check < 1.0. Unity check maksimum struktur Jacket adalah sebagai berikut

Tabel 7.1 Maximum Unity Check

NO MEMBER UNITY CHECK LC

1 001P-1005

(DB2) 0.671 3

2 019P-1042

(DB2) 0.649 3

3 099P-1041

(DB2) 0.674 3

Dari hasil analisis di atas, dapat

diketahui 3 member paling kritis, yaitu member 001P-1005, 019P-1042, dan 099P-1041, dengan detail perhitungan sebagai berikut :

3. Member Group Summary

Dari hasil perhitungan SACS 5.2 untuk member group summary dapat diketahui 3 member paling kritis, antara lain member 001P-1005, member 019P-1042, dan member 009P-1041 dengan detail sebagai berikut : Member 001P-1005

o Group ID : DB2 o Load Condition : 3 o Axial stress : -71.53

N/mm2 o Allowable Stresses : 135.06

N/mm2 o Load Value : 15670 KN o Maximum Unity Check : 0.671

Member 019P-1042 o Group ID : DB2 o Load Condition : 3 o Axial stress : -69.41

N/mm2 o Allowable Stresses : 135.06

N/mm2 o Load Value : 15670 KN o Maximum Unity Check : 0.649

Member 099P-1041 o Group ID : DB2 o Load Condition : 3 o Axial stress : -71.08

N/mm2 o Allowable Stresses : 135.06

N/mm2 o Load Value : 15670 KN o Maximum Unity Check : 0.674

Menurut API RP 2A WSD suatu

struktur dikatakan aman jika struktur tersebut mempunyai unity check < 1.0. Contoh

Page 27: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

27

perhitungan pada member 001P – 1005 sebagai berikut : Member 001P – 1005 Grup ID : (DB2) L (Panjang) : 6.068 meter = 606.8 cm OD (Outer Diameter) : 50.800 cm t (Tebal Member) : 1.270 cm Fy : 24800 kN/sq cm E (Modulus Elastisitas) : 20000 kN/sq cm K (Faktor panjang efektif) : 1 A (Luas permukaan) : ¼ * π * (50.8² - 2.54²) : 2020.73 cm² γ member : 7.849 t/m³ 7.849 x 10-6 t/cm3

Mencari momen inersia Jari-jari luar (R1) : 25.4 cm Jari-jari dalam (R2) : 24.13 cm ρ = γ member : 7.849 t/m³ : 7.849 x 10-6 t/cm3

tebal : 1.270 cm

dm : ρ.dV : ρ.2πr.dr.t : ρ.2πt.r.dt

m : π. ρ. t (R1² - R2²) : : 3.14*7.849*10-6*1.27(25.4²-24.13²)

: 0.001968 t

I (Momen Inersia) : : 2. π. ρ. t

: ½ * π. ρ. t (R14-R2

4) : ½ * π. ρ. t (R1

2-R22)( R1

2+R22)

: ½ * m * ( R12+R2

2) : ½ * 0.001968 * (25.42 + 24.132) : 1.207 cm4

r (jari-jari girasi) : / : 24.7 cm

Axial tension stress : Berdasarkan hasil perhitungan SACS 5.2, pada persmaan (2.1) nilai axial tension stress pada member 001P-1005 adalah, ft = -71.53 N/mm2

Berdasarkan API RP 2A WSD 2000 pasal 3.2.1, besar tegangan aksial tarik ijin adalah, Ft = 0.6 Fy Ft = 0.6 * 24.8 Ft = 14.88 N/mm2

Sehingga, ft < Ft .............................(memenuhi)

Axial compression stress : Berdasarkan hasil perhitungan SACS 5.2, pada persamaan (2.2), (2.3), (2.4) nilai axial compression stress pada member 001P-1005 adalah, fa = 6.5 N/mm2

Berdasarkan API RP 2A WSD 2000 pasal 3.2.1, pada persamaan besar tegangan aksial tekan ijin adalah,

Fa = 13.99 N/mm2

Sehingga, fa < Fa .......................... (memenuhi)

Unity Check (fa / Fa) = 0.46

1

2

dm ²R

R

r

1

2

dr ³R

R

r

5.022

yF

ECc

10.126

8.24

2000025.02

Cc

Cc

566.24r

KL

3

3

2

2

88

3

35

21

Cc

r

KL

Cc

r

KL

FCc

rKL

Fa

y

3

3

2

2

10.1268

)566.24(

10.1268

566.2433

5

8.2410.1262

566.241

xx

xFa

makaCcr

KL,

Page 28: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

28

Bending Stress: Berdasarkan hasil perhitungan SACS 5.2, pada persamaan (2.5), (2.6), (2.7) didapatkan nilai bending stress terbesar terdapat pada member 001P-1005, yaitu: fb = 1.04 N/mm2

Tegangan bending ijin (API RP 2A WSD 2000 pasal 3.2.3),

Fb = 0.75 x 24.8 = 18.6 N/mm2

fb<Fb ………………………….(memenuhi) Unity Check (fb / Fb) = 0.05

Dari perhitungan manual di atas, dapat disimpulkan bahwa pada member 001P-1005 mengalami unity check maksimum pada tegangan tarik aksial.

Gambar 6.9 Gaya dalam yang terjadi pada member 001P-

1005P

Pada Gambar 5.11 dapat dilihat gambar gaya dalam yang terjadi pada salah satu member kritis pada struktur jacket yang direncanakan pada Tugas Akhir ini, yaitu pada member 001P-1005.

Selain beberapa hasil perhitungan SACS 5.2 yang telah dijabarkan, hasil perhitungan analisis inplace yang diperoleh antara lain sebagai berikut :

- Summary of Seastate Generated Dead and Buoyancy Loads

- Summation of Forces and Moments - Seastate Basic Load Description - Seastate Basic Load Summary - Applied Load Summary - Joint Deflections and Rotations - Reaction Forces and Moments - Element Unity Check Report - Member Group Summary

Untuk hasil perhitungan analisis statis secara lengkap dan detail, dapat dilihat pada Lampiran 3 (Static Analysis Summary).

VI.3 ANALISIS PUSHOVER

VI.3.1 Tahapan Analisis Pushover

1. Masukkan data Input model yang telah digunakan pada proses pembebana statis pada SACS 5.2, sacinp. Pada 1 folder.

2. Masukan data input dead load, Self Weight,pushover load pada model yang telah dibuat dengan memberikan nama pada joint load yang akan dibuat.

Gambar 6.10 Joint load pada SACS 5.2 3. Mengubah number of increments,

starting load factor, ending load factor dengan nilai pembagi sesuai yang kita inginkan dalam tahap analisa pushover pada file clpinp

Gambar 6.11 File clpinp pada SACS 5.2

27.1t 608.24yF makaFt y,

Page 29: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

29

Gambar 6.12 loading sequance pada SACS 5.2

4. Sebelum running pada SACS 5.2

persiapkanlah model pada posisi full plastic collapse analysis.

5. Buat folder baru untuk memindahkan hasil full plastic collapse analysis (clprst).

Gambar 6.13 full plastic collapse analysis pada SACS 5.2

6. Running Processing full plastic collapse

analysis. 7. Untuk melihat hasil dari analisa pushover

pada SACS 5.2 dapat dilihat pada file clprst yang didalamnya juga terdapat load step, load factor pada struktur jacket.

Gambar 6.14 Hasil full plastic collapse analysis load step-

22 pada SACS 5.2

Gambar 6.15 Hasil full plastic collapse analysis load step-

23 pada SACS 5.2

Gambar 6.16 Hasil full plastic collapse analysis load step-

24 pada SACS 5.2

Gambar 6.17 Hasil full plastic collapse analysis load step-

25 pada SACS 5.2

Gambar 6.18 Hasil full plastic collapse analysis load step-

26 pada SACS 5.2

Page 30: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

30

VI.3.2 Hasil Perhitungan Analisis Pushover

Struktur jacket mempuyai Reserve Strength Ratio (RSR) yang berbeda untuk setiap arah pembebanan. RSR didefinisikan sebagai rasio dari beban ultimate lateral anjungan menerima pada strukturnya kondisi beban lateral lingkungan 800 tahun, dihitung menggunakan prosedur rekomendasi API RP 2A (2002). Dengan nilai berikut :

Tabel 6.2 Pushover Joint load

Dengan peningtkatan beban yang telah direncanakan memberikan beban pushover direncanakan pada top of jacket dikarenan massa paling besar terdapat pada joint tersebut sehingga sangat berpengaruh besar pada keandalan dari struktur jacket. RSR dapat dihitung dengan mengunakan persamaan:

• RSR = Beban Struktur Collapse

Beban kondisi awal = P awal + Total P increment P awal

Dimana: P awal = P pada desain level kondisi

800 tahun. P increment = P pada analisa pushover

Tabel 6.3 Hasil Reserve Strenght Ratio Pushover load

Dengan melihat pada hasil perhitungan analisa pushover pada table 7.3 maka dapat dekatahui keruntuhan struktur jacket terletak pada peningkatan ke-26 dengan hasil nilai RSR sebesar 3.6. Untuk melihat hasil analisa pushover dan joint displacement selengkapnya dapat dilihat pada Lampiran 4. Dari hasil diatas maka contoh perhitungan struktur collapse diambil pada load step terakhir ketika struktur jacket mengalami keruntuhan. Dengan perhitungan sebagai berikut :

• RSR = Beban Struktur Collapse Beban kondisi awal = 4924.8 + (4924.8 x 2.6) 4924.8 = 3.6

Kriteria pushover Menurut API RP 2A (2002) : L-1: high consequence-manned nonevacuated/ unmanned

RSR > 1.6 L-2:Low consequence-unmanned

RSR > 0.8

Dari hasil diatas maka struktur jacket Bekapai – BL termasuk pada katagori high consequence. Tingkatan ini berdasarkan atas anjungan utama yang berpotensial pada sumur aliran minyak atau gas asam pada saat struktur mengalami kegagalan.

VI.4 HASIL ACCELERATION

DISPLACEMENT RESPONSE SPECTRA (ADRS) Dari persamaan 2.17 sampai dengan

persamaan 2.20 maka berikut ini adalah contoh perhitungan manual dari analisa Acceleration Displacement Respon Spectra (ADRS) yang

LOAD STEP

RESERVE STRENGHT

RATIO (RSR) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6

NO JOINT LOAD (-x) KN

LOAD STEP

LOAD FACTOR

1. 2. 3. 4.

519 L 501 L 581 L 599 L

1231.2 1231.2 1231.2 1231.2

1-26 1-26 1-26 1-26

0.1 – 2.6 0.1 – 2.6 0.1 – 2.6 0.1 – 2.6

Total load 4924.8

Page 31: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

berfungsi kekuatan dimaksudkmenerima

Darumus Acc(ADRS)

diatas dap5. Berikutanalisa Spectra perbandingempa yan

Gambar6

VII.1 KE

dipeTugPusTahdala

sebagai sarastruktur dengkan apakah s

a beban gempa

an dilanjutkanceleration Dis

Hasil pat dilihat lebt ini adalah gAcceleration(ADRS) di

ngan keandang berbeda-be

6.19 Grafik AcceS

BAPEN

ESIMPULAN

Adapun eroleh dari gas Akhir shover Denghun Pada Stah sebagai be

31.1

80.0ISd

14

1.02

2

xSdi

156

492ISa

ana untuk megan gempa restruktur cukua yang diberik

n dengan memsplacement R

dari contoh bih lengkap pgrafik hasil pen Displacemimana ditamlan strukutueda.

eleration DisplaSpectra

AB VII NUTUP

N

kesimpulan berbagai adengan ju

gan Kondisi truktur Jackeerikut :

61374.01

04

8.910013. xx

03142.0670

48.

elihat performencana diman

up andal dalakan :

masukkan Respon Spectr

perhitungapada lampiraerhitungan dament Respompilkan jugur pada zon

acement Respon

yang dapanalisis dalaudul Analis

Gempa 80et Terpancan

2805.0

28

ma na

am

ra

an an ari on ga na

pat am sa 00 ng

1. Dengan adidapatkanpada daesebesar 0.

2. Dengan adiketahui yang diraKN (581.8

3. Dengan abahwa jacuntuk bertpada strukini dapat dcheck) payang metidak lebih

4. Reserve struktur atop of jaaman kaRSR minditetapkaplatform evacuated

analisa data n besarnya nerah struktu4 g (4924.8 Kanalisis statimassa total dncang, yaitu 8766 ton) analisis statiscket yang didrtahan pada kktur jacket Bdilihat dari beada setiap jonyusun strukh besar daripa

Strength adalah 3.6 packet. RSRarena lebih nimum yang an oleh AP

kategori d yaitu 1.6

gempa 800 tnilai beban gur jacket aKN) is struktur dari struktur j

sebesar 5818

s dapat dikedesain cukup

kondisi bebanBekapai - BLesarnya UC (oint dan mektur jacketada 1.

Ratio (Rada pembeb

R tersebut mbesar dari

telah yang I RP 2A uunmanned

tahun empa

adalah

dapat jacket 8.766

etahui p kuat n mati L. Hal

Unity ember

yang

RSR) banan masih ipada telah

untuk non

Page 32: Abstrakdigilib.its.ac.id/public/ITS-Undergraduate-16577...1 Abstrak Jacket merupakan suatu struktur yang digunakan pada bangunan lepas pantai. Jacket berfungsi untuk melindungi pile

32

VII.2 SARAN Setelah melakukan analisa statis dan

pushover terhadap struktur jacket yang didesain berdasarkan data yang ada dengan menggunakan program SACS 5.2, penulis memberikan beberapa saran antara lain:

1. Untuk kedepannya penulis

menyarankan kepada mahasiswa yang mengambil tugas akhir dengan menggunakan sofware ini supaya mengembangkan lagi metode nonlinear analisis untuk kasus-kasus lainnya.

2. Perlu memperkenalkan ilmu bangunan lepas pantai lebih dalam di lingkungan Teknik Sipil khususnya mengenai struktur bangunan lepas pantai.

3. Perlu dilakukan studi lebih lanjut mengenai ilmu bangunan lepas pantai didalam analisa yang lebih komplek dengan memperhatikan aspek yang lebih detail lagi.

4. Membandingkan dengan struktur jacket yang asli, karena perencanaan struktur jacket yang dirancang dalam Tugas Akhir ini adalah sebagai sarana untuk memperkenalkan ilmu bangunan lepas pantai khususnya struktur jacket yang sengaja dibuat sebagai pijakan awal untuk mempelajari ilmu bangunan lepas pantai secara sederhana di jurusan Teknik Sipil ITS.

SEKIAN DAN

TERIMA KASIH